
CMRTC

II B.tech I Semester(IT) 1 Object Oriented Programming

CMR TECHNICAL CAMPUS

Kandlakoya (V), Medchal Road, Hyderabad – 501 401

DEPARTMENT OF INFORMATION TECHNOLOGY

Department of IT

OBJECT ORIENTED PROGRAMMING

CMR TECHNICAL CAMPUS

Kandlakoya (V), Medchal (M), Ranga Reddy (D),

CMRTC

II B.tech I Semester(IT) 2 Object Oriented Programming

Syllabus

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY

HYDERABAD

II Year B.Tech I-Sem T P C

4+1* 0 4

OBJECT ORIENTED PROGRAMMING

UNIT I:

Object-oriented thinking- A way of viewing world – Agents and Communities, messages and

methods, Responsibilities, Classes and Instances, Class Hierarchies- Inheritance, Method binding,

Overriding and Exceptions, Summary of Object-Oriented concepts. Java buzzwords, An

Overview of Java, Data types, Variables and Arrays, operators, expressions, control statements,

Introducing classes, Methods and Classes, String handling.

Inheritance– Inheritance concept, Inheritance basics, Member access, Constructors, Creating

Multilevel hierarchy, super uses, using final with inheritance, Polymorphism-ad hoc

polymorphism, pure polymorphism, method overriding, abstract classes, Object class, forms of

inheritance- specialization, specification, construction, extension, limitation, combination,

benefits of inheritance, costs of inheritance.

UNIT II:

Packages- Defining a Package, CLASSPATH, Access protection, importing packages.

Interfaces- defining an interface, implementing interfaces, Nested interfaces, applying

interfaces, variables in interfaces and extending interfaces.

Stream based I/O(java.io) – The Stream classes-Byte streams and Character streams, Reading

console Input and Writing Console Output, File class, Reading and writing Files, Random access

file operations, The Console class, Serialization, Enumerations, auto boxing, generics.

UNIT III :

Exception handling - Fundamentals of exception handling, Exception types, Termination or

resumptive models, Uncaught exceptions, using try and catch, multiple catch clauses, nested try

statements, throw, throws and finally, built- in exceptions, creating own exception sub classes.

Multithreading- Differences between thread-based multitasking and process-based multitasking,

Java thread model, creating threads, thread priorities, synchronizing threads, inter thread

communication.

CMRTC

II B.tech I Semester(IT) 3 Object Oriented Programming

UNIT IV:

The Collections Framework (java.util)- Collections overview, Collection Interfaces, The

Collection classes- Array List, Linked List, Hash Set, Tree Set, Priority Queue, Array Deque.

Accessing a Collection via an Iterator, Using an Iterator, The For-Each alternative, Map Interfaces

and Classes, Comparators, Collection algorithms, Arrays, The Legacy Classes and Interfaces-

Dictionary, hashtable ,Properties, Stack, Vector More Utility classes, String Tokenizer, Bit Set,

Date, Calendar, Random, Formatter, Scanner

UNIT V:

GUI Programming with Swing – Introduction, limitations of AWT, MVC architecture,

components, containers. Understanding Layout Managers, Flow Layout, Border Layout, Grid

Layout, Card Layout, Grid Bag Layout.

Event Handling- The Delegation event model- Events, Event sources, Event Listeners, Event

classes, Handling mouse and keyboard events, Adapter classes, Inner classes, Anonymous Inner

classes.

A Simple Swing Application

Applets – Applets and HTML, Security Issues, Applets and Applications, passing parameters to

applets. Creating a Swing Applet, Painting in Swing, A Paint example, Exploring Swing Controls-

JLabel and Image Icon, JText Field, The Swing Buttons- JButton, JToggle Button, JCheck Box,

JRadio Button, JTabbed Pane, JScroll Pane, JList, JCombo Box, Swing Menus, Dialogs.

TEXTBOOKS :

1. Java The complete reference, 9th edition, Herbert Schildt, McGraw Hill Education

(India) Pvt. Ltd.

2. Understanding Object-Oriented Programming with Java, updated edition, T. Budd,

Pearson Education.

REFERENCES :

1. An Introduction to programming and OO design using Java, J. Nino and F.A. Hosch,

John Wiley & sons.

2. Introduction to Java programming, Y. Daniel Liang, Pearson Education.

3. Object Oriented Programming through Java, P. Radha Krishna, Universities Press.

4. Programming in Java, S. Malhotra, S. Chudhary, 2nd edition, Oxford Univ. Press.

5. Java Programming and Object oriented Application Development, R. A. Johnson,

Cengage Learning.

CMRTC

II B.tech I Semester(IT) 4 Object Oriented Programming

11. Lecture Notes

11.1 UNIT - 1 Object oriented thinking

Need For OOP Paradigms:

 Object oriented programming is at the core of java.

 All Computer programs consist of two elements: code and data.

 Furthermore a program can be conceptually organized around its code or around its data.

 That is some programs are written around ―What is happening‖ and others bare written

around ―who is being affected‖.

 These are the two paradigms that govern how a program is constructed.

 The first way is called the Process-Oriented Model.

 This approach characterizes a program as a series of linear steps.

 The process oriented model can be thought of code acting on data.

 Procedural languages like C employ this kind of paradigm.

 To manage increasing complexity, the second approach, called object oriented

programming, was conceived.

 Object oriented programming organizes a program around its data.

 An object oriented program can be characterized as data controlling access to code.

1. A way of viewing world – Agents

o OOP uses an approach of treating a real world agent as an object.
o Object-oriented programming organizes a program around its data (that is,

objects) and a set of well-defined interfaces to that data.

o An object-oriented program can be characterized as data controlling access to
code by switching the controlling entity to data.

2. Responsibility

o primary motivation is the need for a platform-independent (that is, architecture-

neutral) language that could be used to create software to be embedded in various
consumer electronic devices, such as microwave ovens and remote controls.

o Objects with clear responsibilities

o Each class should have a clear responsibility.
o If you can't state the purpose of a class in a single, clear sentence, then perhaps

your class structure needs some thought.

3. Messages

o We all like to use programs that let us know what's going on. Programs that keep

us informed often do so by displaying status and error messages.

o These messages need to be translated so they can be understood by end users
around the world.

CMRTC

II B.tech I Semester(IT) 5 Object Oriented Programming

o The Section discusses translatable text messages. Usually, you're done after you
move a message String into a ResourceBundle.

o If you've embedded variable data in a message, you'll have to take some extra
steps to prepare it for translation.

Methods:

A method is a set of code which is referred to by name and can be called (invoked) at any point

in a program simply by utilizing the method's name. Think of a method as a subprogram that acts

on data and often returns a value.

Each method has its own name. When that name is encountered in a program, the execution of

the program branches to the body of that method. When the method is finished, execution returns

to the area of the program code from which it was called, and the program continues on to the

next line of code.

There are two basic types of methods:

Built-in: Build-in methods are part of the compiler package, such as System.out.println () and

System. exit(0).

User-defined: User-defined methods are created by you, the programmer. These methods take-

on names that you assign to them and perform tasks that you create.

Classes:

A class is a blueprint or prototype from which objects are created. This section defines a class that

models the state and behavior of a real-world object. It intentionally focuses on the basics,

showing how even simple classes can cleanly model state and behavior. It is the place where we

declare our members and methods.

Creating a class:

A class is created in the following way

Class <class name>

{

Member variables;

Methods;

}

CMRTC

II B.tech I Semester(IT) 6 Object Oriented Programming

An object is a software bundle of related state and behavior. Software objects are often used to

model the real-world objects that you find in everyday life. This lesson explains how state and

behavior are represented within an object, introduces the concept of data encapsulation, and

explains the benefits of designing your software in this manner.

Bundling code into individual software objects provides a number of benefits, including:

1. Modularity: The source code for an object can be written and maintained independently

of the source code for other objects. Once created, an object can be easily passed around

inside the system.

2. Information-hiding: By interacting only with an object's methods, the details of its internal

implementation remain hidden from the outside world.

3. Code re-use: If an object already exists (perhaps written by another software developer),

you can use that object in your program. This allows specialists to implement/test/debug

complex, task-specific objects, which you can then trust to run in your own code.

4. Pluggability and debugging ease: If a particular object turns out to be problematic, you

can simply remove it from your application and plug in a different object as its

replacement. This is analogous to fixing mechanical problems in the real world. If a bolt

breaks, you replace it, not the entire machine.

An instance or an object for a class is created in the following way

<class name> <object name>=new <constructor>();

Encapsulation:

Encapsulation is the mechanism that binds together code and the data it manipulates, and keeps

both safe from outside interference and misuse. One way to think about encapsulation is as a

protective wrapper that prevents the code and data from being arbitrarily accessed by other code

defined outside the wrapper. Access to the code and data inside the wrapper is tightly controlled

through a well-defined interface. To relate this to the real world, consider the automatic

transmission on an automobile. It encapsulates hundreds of bits of information about your engine,

such as how much we are accelerating, the pitch of the surface we are on, and the position of the

shift

lever. We, as the user, have only one method of affecting this complex encapsulation: by moving

the gear-shift lever. We can’t affect the transmission by using the turn signal or windshield wipers,

for example. Thus, the gear-shift lever is a well-defined (indeed, unique) interface to the

transmission. Further, what occurs inside the transmission does not affect objects outside the

transmission. For example, shifting gears does not turn on the headlights! Because an automatic

transmission is encapsulated, dozens of car manufacturers can implement one in any way they

please. However, from the driver’s point of view, they all work the same. This same idea can be

applied to programming. The power of encapsulated code is that everyone knows how to access

it and thus can use it regardless of the implementation details—and without fear of unexpected

side effects.

Polymorphism:

Polymorphism (from the Greek, meaning ―many forms‖) is a feature that allows one interface to

be used for a general class of actions. The specific action is determined by the exact nature of

the situation. Consider a stack (which is a last-in, first-out list). We might have a program that

requires three types of stacks. One stack is used for integer values, one for floating-point values,

CMRTC

II B.tech I Semester(IT) 7 Object Oriented Programming

and one for characters. The algorithm that implements each stack is the same, even though the

data being stored differs. In a non–object-oriented language, we would be required to create three

different sets of stack routines, with each set using different names. However, because of

polymorphism, in Java we can specify a general set of stack routines that all share the same names.

More generally, the concept of polymorphism is often expressed by the phrase ―one interface,

multiple methods.‖ This means that it is possible to design a generic interface

to a group of related activities. This helps reduce complexity by allowing the same interface to be

used to specify a general class of action. It is the compiler’s job to select the specific action (that

is, method) as it applies to each situation. We, the programmer, do not need to make this selection

manually. You need only remember and utilize the general interface.

Polymorphism allows us to create clean, sensible, readable, and resilient code.

Class Hierarchies (Inheritance):

Different kinds of objects often have a certain amount in common with each other. Mountain

bikes, road bikes, and tandem bikes, for example, all share the characteristics of bicycles (current

speed, current pedal cadence, current gear). Yet each also defines additional features that make

them different: tandem bicycles have two seats and two sets of handlebars; road bikes have drop

handlebars; some mountain bikes have an additional chain ring, giving them a lower gear ratio.

Object-oriented programming allows classes to inherit commonly used state and behavior from

other classes. In this example, Bicycle now becomes the super class of Mountain Bike, Road

Bike, and Tandem Bike. In the Java programming language, each class is allowed to have one

direct superclass, and each superclass has the potential for an unlimited number of subclasses:

The syntax for creating a subclass is simple. At the beginning of your class declaration, use the

extends keyword, followed by the name of the class to inherit from:

class <sub class> extends <super class> {

// new fields and methods defining a sub class would go here

}

The different types of inheritance are

1. Single level Inheritance.

2. Multilevel Inheritance.

3. Hierarchical inheritance.

There is one more type of inheritance called multiple inheritance but it is not used in the way as

other inheritances but it needs a special concept called interfaces.

Method Binding:

 Binding denotes association of a name with a class.

 Static binding is a binding in which the class association is made during compile time.

This is also called as early binding.

 Dynamic binding is a binding in which the class association is not made until the object

is created at execution time. It is also called as late binding.

Abstraction:

 An essential component of object oriented programming is Abstraction

CMRTC

II B.tech I Semester(IT) 8 Object Oriented Programming

 Humans manage complexity through abstraction.

 For example people do not think a car as a set of tens and thousands of individual parts.

 They think of it as a well defined object with its own unique behavior.

 This abstraction allows people to use a car ignoring all details of how the engine,

transmission and braking systems work.

 In computer programs the data from a traditional process oriented program can be

transformed by abstraction into its component objects.

 A sequence of process steps can become a collection of messages between these objects.

 Thus each object describes its own behavior.

Overriding:

 In a class hierarchy when a sub class has the same name and type signature as a method

in the super class, then the method in the subclass is said to override the method in the

super class.

 When an overridden method is called from within a sub class, it will always refer to the

version of that method defined by the sub class.

 The version of the method defined by the super class will be hidden.

Exceptions:

 An exception is an abnormal condition that arises in a code sequence at run time.

 In other words an exception is a run time error.

 A java exception is an object that describes an exceptional condition that has occurred in

a piece of code.

 When an exceptional condition arises, an object representing that exception is created

and thrown in the method that caused the error.

 Now the exception is caught and processed.

Java was conceived by James gosling, Patrick Naughton, chriswarth, Ed frank and Mike

Sheridan at sun Microsystems.

The original impetus for java was not internet instead primary motivation was the need for a

platform independent (i.e. Architectural neutral) independent language.

CMRTC

II B.tech I Semester(IT) 9 Object Oriented Programming

Java’s Byte code:

The key that allows java to solve the both security and portability problems is that the output of

a java compiler is not executable code rather it is byte code.

Byte code is highly optimized set of instructions designed to be executed by java runtime systems,

which is called Java Virtual Machine (JVM). JVM is interpreter for byte code. Translating a java

program into byte code helps makes it much easier to run a Program in a wide variety of

environments. The reason is straightforward: only the JVM needs to be implemented for each

platform. Once the run-time package exists for a given system, any Java program can run on it.

The Java Buzzwords:

No discussion of the genesis of Java is complete without a look at the Java buzzwords. Although

the fundamental forces that necessitated the invention of Java are portability and security, other

factors also played an important role in mol ding the final form of the language. The key

considerations were summed up by the Java team in the following list of buzzwords:

 Simple

 Secure

 Portable

 Object-oriented

 Robust

 Multithreaded

 Architecture-neutral

 Interpreted

 High performance

 Distributed

 Dynamic

Simple

Java was designed to be easy for the professional programmer to learn and use effectively.

Assuming that you have some programming experience, you will not find Java hard to master. If

you already understand the basic concepts of object-oriented programming, learning Java will

be even easier. Best of all, if you are an experienced C++ programmer, moving to Java will require

very little effort. Because Java inherits the C/C++ syntax and many of the object- oriented features

of C++

Robust

The multiplatform environment of the Web places extraordinary demands on a program, because

the program must execute reliably in a variety of systems. Thus, the ability to create robust

programs were given a high priority in the design of Java. To gain reliability, Java restricts you in

a few key areas, to force you to find your mistakes early in program development. At the same

time, Java frees you from having to worry about many of the most common causes of

programming errors. Because Java is a strictly typed language, it checks your code at compile

time. However, it also checks your code at run time. To better understand how Java is robust,

consider two of the main reasons for program failure: memory management mistakes and

mishandled exceptional conditions (that is, run-time errors). Memory management can be a

difficult, tedious task in traditional programming environments. For example, in C/C++, the

programmer must manually allocate and free all dynamic memory. This sometimes leads to

problems, because programmers will either forget to free memory that has

CMRTC

II B.tech I Semester(IT) 10 Object Oriented Programming

been previously allocated or, worse, try to free some memory that another part of their code is

still using. Java virtually eliminates these problems by managing memory allocation and

deallocation for you. (In fact, deallocation is completely automatic, because Java provides garbage

collection for unused objects.) Exceptional conditions in traditional environments often arise in

situations such as division by zero or ―file not found,‖ and they must be managed with clumsy

and hard-to-read constructs. Java helps in this area by providing object-oriented exception

handling. In a well-written Java program, all run-time errors can—and should—be managed by

your program.

Multithreaded

Java was designed to meet the real-world requirement of creating interactive, networked

programs. To accomplish this, Java supports multithreaded programming, which allows you to

write programs that do many things simultaneously.

Architecture-Neutral

A central issue for the Java designers was that of code longevity and portability. One of the main

problems facing programmers is that no guarantee exists that if you write a program today, it will

run tomorrow—even on the same machine. Operating system upgrades, processor upgrades, and

changes in core system resources can all combine to make a program malfunction. The Java

designers made several hard decisions in the Java language and the Java Virtual Machine in an

attempt to alter this situation. Their goal was ―write once; run anywhere, anytime, forever.‖ To a

great extent, this goal was accomplished.

Interpreted and High Performance

Java enables the creation of cross-platform programs by compiling into an intermediate

representation called Java byte code. This code can be interpreted on any system that provides a

Java Virtual Machine. Most previous attempts at cross platform solutions have done so at the

expense of performance. Java was engineered for interpretation, the Java byte code was carefully

designed so that it would be easy to translate directly into native machine code for very high

performance by using a just-in-time compiler. Java run-time systems that provide this feature lose

none of the benefits of the platform-independent code. ―High-performance cross- platform‖ is

no longer an oxymoron.

Distributed

Java is designed for the distributed environment of the Internet, because it handles TCP/IP

protocols. In fact, accessing a resource using a URL is not much different from accessing a file.

The original version of Java (Oak) included features for intraaddress-space messaging. This

allowed objects on two different computers to execute procedures remotely. Java revived these

interfaces in a package called Remote Method Invocation (RMI). This feature brings an

unparalleled level of abstraction to client/server programming.

Dynamic

Java programs carry with them substantial amounts of run-time type information that is used to

verify and resolve accesses to objects at run time. This makes it possible to dynamically link code

in a safe and expedient manner. This is crucial to the robustness of the applet environment, in

which small fragments of byte code may be dynamically updated on a running system.

Security

CMRTC

II B.tech I Semester(IT) 11 Object Oriented Programming

Every time that you download a ―normal‖ program, you are risking a viral infection. Even so,

most users still worried about the possibility of infecting their systems with a virus. In addition

to viruses, another type of malicious program exists that must be guarded against. This type of

program can gather private information, such as credit card numbers, bank account balances, and

passwords, by searching the contents of your computer’s local file system. Java answers both of

these concerns by providing a ―firewall‖ between a networked application and your computer.

When you use a Java-compatible Web browser, you can safely download Java applets without fear

of viral infection or malicious intent. Java achieves this protection by confining a Java program

to the Java execution environment and not allowing it access to other parts of the computer.

Portability

Many types of computers and operating systems are in use throughout the world—and many are

connected to the Internet. For programs to be dynamically downloaded to all the various types of

platforms connected to the Internet, some means of generating portable executable code is needed.

As you will soon see, the same mechanism that helps ensure security also helps create portability.

Data Types:

Java defines eight simple types of data: byte, short, int, long, char, float, double, and Boolean.

These can be put in four groups:

 Integers this group includes byte, short, int, and long, which are for whole valued

signed numbers.

 Floating-point numbers this group includes float and double, which represent numbers

with fractional precision.

 Characters this group includes char, which represents symbols in a character set, like

letters and numbers.

 Boolean this group includes Boolean, which is a special type for representing true/false

values.

Integers:

The width and ranges of these integer types vary widely, as shown in this table:

Name Width Range

long 64 –9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

int 32 –2,147,483,648 to 2,147,483,647

short 16 –32,768 to 32,767

byte 8 –128 to 127

Floating-point:

There are two kinds of floating-point types, float and double, which represent single- and

double-precision numbers, respectively. Their width and ranges are shown here:

Name Width in Bits Approximate Range

double 64 4.9e–324 to 1.8e+308

float 32 1.4e−045 to 3.4e+038

Variables:

CMRTC

II B.tech I Semester(IT) 12 Object Oriented Programming

The variable is the basic unit of storage in a Java program. A variable is defined by the

combination of an identifier, a type, and an optional initializer. In addition, all variables have a

scope, which defines their visibility, and a lifetime. In Java, all variables must be declared before

they can be used. The basic form of a variable declaration is shown here:

type identifier [= value][, identifier [= value] ...];

The type is one of Java’s atomic types, or the name of a class or interface. The identifier is the

name of the variable. You can initialize the variable by specifying an equal sign and a value. To

declare more than one variable of the specified type, use a comma-separated list.

Here are several examples of variable declarations of various types. Note that some include an

initialization.

int a, b, c; // declares three ints, a, b, and c.

int d = 3, e, f = 5; // declares three more ints

byte z = 22; // initializes z.

double pi = 3.14159; // declares an approximation of pi.

char x = 'x'; // the variable x has the value 'x'.

The Scope and Lifetime of Variables:

All of the variables used till now have been declared at the start of the main() method. However,

Java allows variables to be declared within any block. A block is begun with an opening curly

brace and ended by a closing curly brace. A block defines a scope. Thus, each time you start a new

block, you are creating Scope determines what objects are visible to other parts of your program.

It also determines the lifetime of those objects. Most other computer languages define two general

categories of scopes: global and local.

The scope defined by a method begins with its opening curly brace. However, if that method has

parameters, they too are included within the method’s scope. variables declared inside a scope are

not visible (that is, accessible)to code that is defined outside that scope. Thus, when you declare

a variable within a scope, you are localizing that variable and protecting it from unauthorized

access and/or modification. Scopes can be nested. For example, each time you create a block of

code, you are creating a new, nested scope. When this occurs, the outer scope encloses the inner

scope. This means that objects declared in the outer scope will be visible to code within the inner

scope. However, the reverse is not true. Objects declared within the inner scope will not be visible

outside it.

To understand the effect of nested scopes, consider the following program:

// Demonstrate block scope.

class Scope {

public static void main(String args[]) {

int x; // known to all code within main

x = 10;

if(x == 10) { // start new scope

int y = 20; // known only to this block

// x and y both known here.

System.out.println("x and y: " + x + " " + y);

x = y * 2;

}

// y = 100; // Error! y not known here

// x is still known here.

System.out.println("x is " + x);

}

CMRTC

II B.tech I Semester(IT) 13 Object Oriented Programming

}

As the comments indicate, the variable x is declared at the start of main()’s scope and is accessible

to all subsequent code within main(). Within the if block, y is declared. Since a block defines

a scope, y is only visible to other code within its block. This is why outside of its block, the line

y = 100; is commented out. If you remove the leading comment symbol, a compile-time error will

occur, because y is not visible outside of its block. Within the if block, x can be used because code

within a block (that is, a nested scope) has access to variables declared by an enclosing scope.

Here is another important point to remember: variables are created when their scope is entered

and destroyed when their scope is left. This means that a variable will not hold its value once it

has gone out of scope. Therefore, variables declared within a method will not hold their values

between calls to that method. Also, a variable declared within a block will lose its value when the

block is left. Thus, the lifetime of a variable is confined to its scope. If a variable declaration

includes an initializer, then that variable will be reinitialized each time the block in which it is

declared is entered.

For example, consider the next program.

// Demonstrate lifetime of a variable.

class Lifetime {

public static void main(String args[]) {

int x;

for(x = 0; x < 3; x++) {

int y = -1; // y is initialized each time block is entered

System.out.println("y is: " + y); // this always prints -1

y = 100;

System.out.println("y is now: " + y);

}

}

}

The output generated by this program is shown here:

y is: -1

y is now: 100

y is: -1

y is now: 100

y is: -1

y is now: 100

As you can see, y is always reinitialized to –1 each time the inner for loop is entered. Even though

it is subsequently assigned the value 100, this value is lost.One last point: Although blocks can be

nested, you cannot declare a variable to have the same name as one in an outer scope.

Arrays:

An array is a group of similar-typed variables that are referred to by a common name. Arrays of

any type can be created and may have one or more dimensions. A specific element in an array is

accessed by its index. Arrays offer a convenient means of grouping related information.

One-Dimensional Arrays

A one-dimensional array is a list of like-typed variables. To create an array, you first must

create an array variable of the desired type. The general form of a one dimensional array

declaration is

type var-name[];

CMRTC

II B.tech I Semester(IT) 14 Object Oriented Programming

Here, type declares the base type of the array. For example, the following declares an array named

month with the type ―array of int‖:

int month [];

Although this declaration establishes the fact that month is an array variable, no array actually

exists. In fact, the value of month is set to null, which represents an array with no value. To link

month with an actual, physical array of integers, you must allocate one using new and assign it

to month. new is a special operator that allocates memory. The general form of new as it

applies to one-dimensional arrays appears as follows:

array-var = new type[size];

Here, type specifies the type of data being allocated, size specifies the number of elements in the

array, and array-var is the array variable that is linked to the array. That is, to use new to

allocate an array, you must specify the type and number of elements to allocate. The elements in

the array allocated by new will automatically be initialized to zero.

This example allocates a 12-element array of integers and links them to month

month = new int[12];

After this statement executes, month will refer to an array of 12 integers. Further, all elements

in the array will be initialized to zero.

Another way to declare an arrayin single step is

type arr-name=new type[size];

Arrays can be initialized when they are declared. The process is much the same as that used to

initialize the simple types. An array initializer is a list of comma-separated expressions

surrounded by curly braces. The commas separate the values of the array elements. The array will

automatically be created large enough to hold the number of elements you specify in the array

initializer. There is no need to use new.

For example, to store the number of days in each month, we do as follows

// An improved version of the previous program.

class AutoArray

{

public static void main(String args[])

{

int month[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31,30, 31 };

System.out.println("April has " + month[3] + " days.");

}

}

When you run this program, in the output it prints the number of days in April. As mentioned,

Java array indexes start with zero, so the number of days in April is month[3] or 30.

Here is one more example that uses a one-dimensional array. It finds the average of a set of

numbers.

// Average an array of values.

class Average

{

public static void main(String args[])

{

double nums[] = {10.1, 11.2, 12.3, 13.4, 14.5};

double result = 0;

CMRTC

II B.tech I Semester(IT) 15 Object Oriented Programming

int i;

for(i=0; i<5; i++)

result = result + nums[i];

System.out.println("Average is " + result / 5);

}

}

Output: Average is:12.3

Multidimensional Arrays

In Java, multidimensional arrays are actually arrays of arrays. To declare a multidimensional array

variable, specify each additional index using another set of square brackets. For example, the

following declares a two-dimensional array variable called twoD.

int twoD[][] = new int[4][5];

This allocates a 4 by 5 array and assigns it to twoD.

program :

// Demonstrate a two-dimensional array.

class TwoDArray

{

public static void main(String args[])

{

int twoD[][]= new int[4][5];

int i, j, k = 0;

for(i=0; i<4; i++)

for(j=0; j<5; j++)

{

twoD[i][j] = k;

k++;

}

for(i=0; i<4; i++)

{

for(j=0; j<5; j++)

System.out.print(twoD[i][j] + " ");

System.out.println();

}

}

}

Output:

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

When you allocate memory for a multidimensional array, you need only specify the memory for

the first (leftmost) dimension. You can allocate the remaining dimensions separately. We can

allocates the second dimension manually.

int twoD[][] = new int[4][];

twoD[0] = new int[5];

twoD[1] = new int[5];

twoD[2] = new int[5];

twoD[3] = new int[5];

we can creates a two dimensional array in which the sizes of the second dimension are unequal.

// Manually allocate differing size second dimensions.

CMRTC

II B.tech I Semester(IT) 16 Object Oriented Programming

class TwoDAgain

{

public static void main(String args[])

{

int twoD[][] = new int[4][];

twoD[0] = new int[1];

twoD[1] = new int[2];

twoD[2] = new int[3];

twoD[3] = new int[4];

int i, j, k = 0;

for(i=0; i<4; i++)

for(j=0; j<i+1; j++)

{

twoD[i][j] = k;

k++;

}

for(i=0; i<4; i++)

{

for(j=0; j<i+1; j++)

System.out.print(twoD[i][j] + " ");

System.out.println();

}

}

}

Output:

0

1 2

3 4 5

6 7 8

We can create a three-dimensional array where first index specifies the number of tables, second

one number o0f rows and the third number of columns.

// Demonstrate a three-dimensional array.

class threeDMatrix

{

public static void main(String args[])

{

int threeD[][][] = new int[3][4][5];

int i, j, k;

for(i=0; i<3; i++)

for(j=0; j<4; j++)

for(k=0; k<5; k++)

threeD[i][j][k] = i * j * k;

for(i=0; i<3; i++)

{

for(j=0; j<4; j++)

{

for(k=0; k<5; k++)

System.out.print(threeD[i][j][k] + " ");

System.out.println();

}System.out.println();

CMRTC

II B.tech I Semester(IT) 17 Object Oriented Programming

}

}

}

Output:

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 2 3 4

0 2 4 6 8

0 3 6 9 12

0 0 0 0 0

0 2 4 6 8

0 4 8 12 16

0 6 12 18 24

Alternative Array Declaration Syntax

There is a second form that may be used to declare an array:

type[] var-name;

Here, the square brackets follow the type specifier, and not the name of the array variable. For

example, the following two declarations are equivalent:

int al[] = new int[3];

int[] a2 = new int[3];

The following declarations are also equivalent:

char twod1[][] = new char[3][4];

char[][] twod2 = new char[3][4];

Operators:

Operators are special symbols that perform specific operations on one, two, or three operands,

and then return a result. The operators in the following table are listed according to precedence

order. The closer to the top of the table an operator appears, the higher its precedence. Operators

with higher precedence are evaluated before operators with relatively lower precedence.

Operators on the same line have equal precedence. When operators of equal precedence appear in

the same expression, a rule must govern which is evaluated first. All binary operators except for

the assignment operators are evaluated from left to right; assignment operators are evaluated right

to left.

Operator Precedence

Operators Precedence

Postfix EXPR++, EXPR--

Unary ++EXPR --EXPR +EXPR –EXPR ~ !

CMRTC

II B.tech I Semester(IT) 18 Object Oriented Programming

multiplicative * / %

additive + -

shift << >> >>>

relational < > <= >= instanceof

equality == !=

bitwise AND &

bitwise exclusive OR ^

bitwise inclusive OR |

logical AND &&

logical OR ||

ternary ? :

assignment = += -= *= /= %= &= ^= |= <<= >>= >>>=

In general-purpose programming, certain operators tend to appear more frequently than theirs; for

example, the assignment operator "=" is far more common than the unsigned right shift operator

">>>".

Expressions:

An EXPRESSION is a construct made up of variables, operators, and method invocations,

which are constructed according to the syntax of the language that evaluates to a single value.

int a = 0;

arr[0] = 100;

System.out.println("Element 1 at index 0: " + arr[0]);

int result = 1 + 2; // result is now 3

if(value1 == value2)

System.out.println("value1 == value2");

The data type of the value returned by an expression depends on the elements used in the

expression. The expression a= 0 returns an int because the assignment operator returns a value of

the same data type as its left-hand operand; in this case, cadence is an int. As you can see from

the other expressions, an expression can return other types of values as well, such as boolean or

String.

CMRTC

II B.tech I Semester(IT) 19 Object Oriented Programming

For example, the following expression gives different results, depending on whether you perform
the addition or the division operation first:

x + y / 100 // ambiguous

You can specify exactly how an expression will be evaluated using balanced parenthesis rewrite
the expression as

(x + y) / 100 // unambiguous, recommended

If you don't explicitly indicate the order for the operations to be performed, the order is determined

by the precedence assigned to the operators in use within the expression. Operators that have a

higher precedence get evaluated first. For example, the division operator has a higher precedence

than does the addition operator. Therefore, the following two statements are equivalent:

x + y / 100

x + (y / 100) // unambiguous, recommended

When writing compound expressions, be explicit and indicate with parentheses which operators

should be evaluated first.

Control Statements:

IF Statement

The general form of the if statement:

if (condition) statement1;

Here, each statement may be a single statement or a compound statement enclosed in curly

braces (that is, a block). The condition is any expression that returns a boolean value.

If the condition is true, then statement1 is executed. Otherwise,statement2 is executed.

IF –ELSE Statement

The general form of the if statement:

if (condition) statement1;

else statement2;

The if-then-else statement provides a secondary path of execution when an "if" clause evaluates

to false.

void applyBrakes()

{

if (isMoving) {

currentSpeed--;

} else {

System.err.println("The bicycle has already stopped!");

CMRTC

II B.tech I Semester(IT) 20 Object Oriented Programming

}

}

The switch Statement

Unlike if-then and if-then-else, the switch statement allows for any number of possible execution

paths. A switch works with the byte, short, char, and int primitive data types. It also works with

enumerated types .

Program: displays the name of the month, based on the value of month, using the switch statement.

class SwitchDemo

{

public static void main(String[] args) {

int month = 8;

switch (month) {

case 1: System.out.println("January");

break;

case 2: System.out.println("February");

break;

case 3: System.out.println("March");

break;

case 4: System.out.println("April");

break;

case 5: System.out.println("May");

break;

case 6: System.out.println("June");

break;

case 7: System.out.println("July");

break;

case 8: System.out.println("August");

break;

case 9: System.out.println("September");

break;

case 10: System.out.println("October");

break;

case 11: System.out.println("November");

break;

case 12: System.out.println("December");

break;

default: System.out.println("Invalid month.");

break;

}

}

}

Output:"August"

CMRTC

II B.tech I Semester(IT) 21 Object Oriented Programming

The body of a switch statement is known as a switch block. Any statement immediately contained

by the switch block may be labeled with one or more case or default labels. The switch

statement evaluates its expression and executes the appropriate case.

The while and do-while Statements

The while statement continually executes a block of statements while a particular condition is

true.

Its syntax can be expressed as:

while (expression) {

statement(s)
}

The while statement evaluates expression, which must return a boolean value. If the expression

evaluates to true, the while statement executes the STATEMENT(s) in the while block. The while

statement continues testing the expression and executing its block until the expression evaluates

to false. Using the while statement to print the values from 1 through 10 can be accomplished as

in the following program:

class WhileDemo

{

public static void main(String[] args){

int count = 1;

while (count < 11) {

System.out.println("Count is: " + count);

count++;

}

}

}

do-while statement

Its syntax can be expressed as:

do {

statement(s)

} while (expression);

The difference between do-while and while is that do-while evaluates its expression at the bottom

of the loop instead of the top. Therefore, the statements within the do block are always executed

at least once.

Program:

class DoWhileDemo

{

public static void main(String[] args){

int count = 1;

do {

System.out.println("Count is: " + count);

count++;

} while (count <= 11);

CMRTC

II B.tech I Semester(IT) 22 Object Oriented Programming

}

}

The for Statement

The for statement provides a compact way to iterate over a range of values. Programmers often

refer to it as the "for loop" because of the way in which it repeatedly loops until a particular

condition is satisfied. The general form of the for statement can be expressed as follows:

for (INITIALIZATION; TERMINATION; INCREMENT) {

STATEMENT(S)

}

When using the for statement, we need to remember that

 The INITIALIZATION expression initializes the loop; it's executed once, as the loop

begins.

 When the TERMINATION expression evaluates to false, the loop terminates.

 The INCREMENT expression is invoked after each iteration through the loop; it is

perfectly acceptable for this expression to increment or decrement a value.

Type Conversion and Casting:

We can assign a value of one type to a variable of another type. If the two types are compatible,

then Java will perform the conversion automatically. For example, it is always possible to assign

an int value to a long variable. However, not all types are compatible, and thus, not all type

conversions are implicitly allowed. For instance, there is no conversion defined from double to

byte.

But it is possible for conversion between incompatible types. To do so, you must use a cast, which

performs an explicit conversion between incompatible types.

Java’s Automatic Conversions

When one type of data is assigned to another type of variable, an automatic type conversion will

take place if the following two conditions are satisfied:

 The two types are compatible.

 The destination type is larger than the source type.

When these two conditions are met, a widening conversion takes place. For example, the int type

is always large enough to hold all valid byte values, so no explicit cast statement is required.

For widening conversions, the numeric types, including integer and floating-point types, are

compatible with each other. However, the numeric types are not compatible with char or boolean.

Also, char and boolean are not compatible with each other.

Java also performs an automatic type conversion when storing a literal integer constant into

variables of type byte, short, or long.

Casting Incompatible Types

The automatic type conversions are helpful, they will not fulfil all needs. For example, if we want

to assign an int value to a byte variable. This conversion will not be performed automatically,

because a byte is smaller than an int. This kind of conversion is sometimes called a narrowing

conversion, since you are explicitly making the value narrower so that it will fit

CMRTC

II B.tech I Semester(IT) 23 Object Oriented Programming

into the target type. To create a conversion between two incompatible types, you must use a

cast. A cast is simply an explicit type conversion.

It has this general form:

(target-type) value

Here, target-type specifies the desired type to convert the specified value to.

Example:

int a;

byte b;

// ...

b = (byte) a;

A different type of conversion will occur when a floating-point value is assigned to an integer

type: truncation. As integers do not have fractional components so,when a floating-point value

is assigned to an integer type, the fractional component is lost.

Program:

class Conversion

{

public static void main(String args[]) {

byte b;

int i = 257;

double d = 323.142;

System.out.println("\nConversion of int to byte.");

b = (byte) i;

System.out.println("i and b " + i + " " + b);

System.out.println("\nConversion of double to int.");

i = (int) d;

System.out.println("d and i " + d + " " + i);

System.out.println("\nConversion of double to byte.");

b = (byte) d;

System.out.println("d and b " + d + " " + b);

}

}

Output:

Conversion of int to byte.

i and b 257 1

Conversion of double to int.

d and i 323.142 323

Conversion of double to byte.

d and b 323.142 67

byte b = 50;

b = (byte)(b * 2);

The Type Promotion Rules:

In addition to the elevation of bytes and shorts to int, Java defines several type promotion rules

that apply to expressions. They are as follows. First, all byte and short values are promoted to int.

Then, if one operand is a long, the whole expression is promoted to long. If one operand is a float,

the entire expression is promoted to float.If any of the operands is double, the result is double.

The following program demonstrates how each value in the expression gets

promoted to match the second argument to each binary operator:

CMRTC

II B.tech I Semester(IT) 24 Object Oriented Programming

class Promote {

public static void main(String args[]) {

byte b = 42;

char c = 'a';

short s = 1024;

int i = 50000;

float f = 5.67f;

double d = .1234;

double result = (f * b) + (i / c) - (d * s);

System.out.println((f * b) + " + " + (i / c) + " - " + (d * s));

System.out.println("result = " + result);

}

}

double result = (f * b) + (i / c) - (d * s);

In the first sub expression, f * b, b is promoted to a float and the result of the sub expression is

float. Next, in the sub expression i / c, c is promoted to int, and the result is of type int. Then, in

d * s, the value of s is promoted to double, and the type of the sub expression is double. Finally,

these three intermediate values, float, int, and double, are considered. The outcome of float plus

an int is a float. Then the resultant float minus the last double is promoted to double, which is the

type for the final result of the expression.

Simple Java Program:

class Example

{

public static void main(String args[]) {

System.out.println("This is a simple Java program.");

}

}

Here public is an access modifier, which means this method can be accessed by any one out side

the class.

Static allows the main () method to be called without initiating any instance for the class.

Void tells the compiler that main() doesnot return any type.

String args[] declares a parameter named args,which is an array of instances of class string.

args takes the arguments for a command line.

Classes and Objects:

In the real world, you'll often find many individual objects all of the same kind. There may be

thousands of other bicycles in existence, all of the same make and model. Each bicycle was built

from the same set of blueprints and therefore contains the same components. In object-oriented

terms, we say that your bicycle is an instance of the class of objects known as bicycles. A class is

the blueprint from which individual objects are created.

Declaring Member Variables

There are several kinds of variables:

 Member variables in a class—these are called fields.

 Variables in a method or block of code—these are called local variables.
 Variables in method declarations—these are called parameters.

CMRTC

II B.tech I Semester(IT) 25 Object Oriented Programming

A class is declared by use of the class keyword

class classname {

type instance-variable1;

type instance-variable2;

// ...

type instance-variableN;

type methodname1(parameter-list) {

// body of method

}

type methodname2(parameter-list) {

// body of method

}

// ...

type methodnameN(parameter-list) {

// body of method

}

}

The data, or variables, defined within a class are called instance variables. The code is contained

within methods. Collectively, the methods and variables defined within a class are called members

of the class. In most classes, the instance variables are acted upon and accessed by the methods

defined for that class. Variables defined within a class are called instance variables because each

instance of the class (that is, each object of the class) contains its own copy of these

variables.Thus, the data for one object is separate and unique from the data for another.

Example:

Class demo

{

int x=1;;

int y=2;

float z=3;

void display()

{

System.out.println(―values of x, y and z are:‖+x+‖ ―+y‖+‖ ―+z);

}

}

Declaring Objects

when you create a class, you are creating a new data type. You can use this type to declare objects

of that type. However, obtaining objects of a class is a two-step process. First, you must declare

a variable of the class type. This variable does not define an object. Instead, it is simply a variable

that can refer to an object. Second, you must acquire an actual, physical copy of the object and

assign it to that variable. You can do this using the new operator. The new operator dynamically

allocates (that

is, allocates at run time) memory for an object and returns a reference to it. This reference is,

more or less, the address in memory of the object allocated by new.

This reference is then stored in the variable. Thus, in Java, all class objects must be dynamically

allocated.

In the above programs to declare an object of type demo:

Demo d1 = new demo();

This statement combines the two steps just described. It can be rewritten like this to

CMRTC

II B.tech I Semester(IT) 26 Object Oriented Programming

show each step more clearly:

demo d1; // declare reference to object

d1 = new demo(); // allocate a demo object

The first line declares d1 as a reference to an object of type demo. After this line executes, d1

contains the value null, which indicates that it does not yet point to an actual object. Any attempt

to use d1 at this point will result in a compile-time error. The next line allocates an actual

object and assigns a reference to it to d1.After the second line executes; you can use d1 as if it

were a demo object. But in reality, d1 simply holds the memory address of the actual demo object.

The effect of these two lines of code is depicted in Figure.

Statement Effect

Demo d1;

d1

d1=new demo();

d1

demo object

Constructors:

A class contains constructors that are invoked to create objects from the class blueprint.

Constructor declarations look like method declarations—except that they use the name of the

class and have no return type. A constructor initializes an object immediately upon creation.

Constructors can be default or parameterized constructors.

A default constructor is called when an instance is created for a class.

Example

Class demo

{

int x;

int y;

float z;

demo()

{

X=1;

Y=2;

null

x

y

z

CMRTC

II B.tech I Semester(IT) 27 Object Oriented Programming

Z=3;

}

void display()

{

System.out.println(―values of x, y and z are:‖+x+‖ ―+y‖+‖ ―+z);

}

}

Class demomain

{

Public static void main(String args[])

{

demo d1=new demo(); // this is a call for the above default constructor

d1.display();

}

}

Parameterized constructor:

Class demo

{

int x;

int y;

float z;

demo(int x1,int y1,int z1)

{

x=x1;

y=y1;

z=z1;

}

void display()

{

System.out.println(―values of x, y and z are:‖+x+‖ ―+y‖+‖ ―+z);

}

}

Class demomain

{

Public static void main(String args[])

{

demo d1=new demo(1,2,3); // this is a call for the above parameterized constructor

d1.display();

}

}

This Keyword:

Sometimes a method will need to refer to the object that invoked it. To allow this, Java defines

the this keyword. this can be used inside any method to refer to the current object.That is, this

is always a reference to the object on which the method was invoked. You can use this anywhere

a reference to an object of the current class’ type is permitted.

Example:

CMRTC

II B.tech I Semester(IT) 28 Object Oriented Programming

Class demo

{

int x;

int y;

float z;

demo(int x,int y,int z)

{

this.x=x;

this.y=y;

this.z=z;

}

void display()

{

System.out.println(―values of x, y and z are:‖+x+‖ ―+y‖+‖ ―+z);

}

}

Class demomain

{

Public static void main(String args[])

{

demo d1=new demo(1,2,3); // this is a call for the above parameterized constructor

d1.display();

}

}

Output:

Values of x, y and z are:1 2 3

To differentiate between the local and instance variables we have used this keyword int the

constructor.

Garbage Collection:

Since objects are dynamically allocated by using the new operator, objects are destroyed and their

memory released for later reallocation. In some languages, such as C++, dynamically allocated

objects must be manually released by use of a delete operator. Java takes a different approach; it

handles deallocation for you automatically. The technique that accomplishes this is called garbage

collection. It works like this: when no references to an object exist, that object is assumed to be

no longer needed, and the memory occupied by the object can be reclaimed. There is no explicit

need to destroy objects as in C++.

The finalize() Method

Sometimes an object will need to perform some action when it is destroyed. For example, if an

object is holding some non-Java resource such as a file handle or window character font, then you

might want to make sure these resources are freed before an object is destroyed. To handle such

situations, Java provides a mechanism called finalization. By using finalization, you can define

specific actions that will occur when an object is just about to be reclaimed by the garbage

collector.

To add a finalizer to a class, you simply define the finalize() method. The Java run time calls that

method whenever it is about to recycle an object of that class. Inside the finalize() method you

will specify those actions that must be performed before an object is destroyed. The garbage

CMRTC

II B.tech I Semester(IT) 29 Object Oriented Programming

collector runs periodically, checking for objects that are no longer referenced by any running state

or indirectly through other referenced objects. Right before an asset is freed, the Java run time

calls the finalize() method on the object.

The finalize() method has this general form:

protected void finalize()

{

// finalization code here

}

Here, the keyword protected is a specifier that prevents access to finalize() by code defined

outside its class.

Overloading Methods:

The Java programming language supports overloading methods, and Java can distinguish between

methods with different method signatures. This means that methods within a class can have the

same name if they have different parameter lists .

Suppose that you have a class that can use calligraphy to draw various types of data (strings,

integers, and so on) and that contains a method for drawing each data type. It is cumbersome to

use a new name for each method—for example, drawString, drawInteger, drawFloat, and so on.

In the Java programming language, you can use the same name for all the drawing methods but

pass a different argument list to each method. Thus, the data drawing class might declare four

methods named draw, each of which has a different parameter list.

public class DataArtist {

...

public void draw(String s) {

...

}

public void draw(int i) {

...

}

public void draw(double f) {

...

}

public void draw(int i, double f) {

...

}

}

Overloaded methods are differentiated by the number and the type of the arguments passed into

the method. In the code sample, draw(String s) and draw(int i) are distinct and unique methods

because they require different argument types. You cannot declare more than one method with

the same name and the same number and type of arguments, because the compiler cannot tell them

apart.The compiler does not consider return type when differentiating methods, so you cannot

declare two methods with the same signature even if they have a different return type.

Overloading Constructors:

We can overload constructor methods

class Box {

double width;

double height;

double depth;

CMRTC

II B.tech I Semester(IT) 30 Object Oriented Programming

// This is the constructor for Box.

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

As you can see, the Box() constructor requires three parameters. This means that all declarations

of Box objects must pass three arguments to the Box() constructor. For example, the following

statement is currently invalid:

Box ob = new Box();

Since Box() requires three arguments.

/* Here, Box defines three constructors to initialize

the dimensions of a box various ways.

*/

class Box {

double width;

double height;

double depth;

// constructor used when all dimensions specified

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// constructor used when no dimensions specified

Box() {

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created

Box(double len) {

width = height = depth = len;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

class OverloadCons

{

public static void main(String args[]) {

// create boxes using the various constructors

Box mybox1 = new Box(10, 20, 15);

Box mybox2 = new Box();

Box mycube = new Box(7);

CMRTC

II B.tech I Semester(IT) 31 Object Oriented Programming

double vol;

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume of mybox2 is " + vol);

//get volume of cube

vol = mycube.volume();

System.out.println("Volume of mycube is " + vol);

}

}

Output:

Volume of mybox1 is 3000.0

Volume of mybox2 is -1.0

Volume of mycube is 343.0

Parameter Passing:

In general, there are two ways that a computer language can pass an argument to a subroutine.

The first way is call-by-valueI.In this method copies the value of an argument into the formal

parameter of the subroutine. Therefore, changes made to the parameter of the subroutine have

no effect on the argument.

The second way an argument can be passed is call-by-reference. In this method, a reference to

an argument (not the value of the argument) is passed to the parameter. Inside the subroutine, this

reference is used to access the actual argument specified in the call. This means that

changes made to the parameter will affect the argument used to call the subroutine.

Java uses both approaches, depending upon what is passed.

In Java, when you pass a simple type to a method, it is passed by value. Thus, what occurs to the

parameter that receives the argument has no effect outside the method.

For example, consider the following program:

// Simple types are passed by value.

class Test {

void meth(int i, int j) {

i *= 2;

j /= 2;

}

}

class CallByValue

{

public static void main(String args[])

{

Test ob = new Test();

int a = 15, b = 20;

System.out.println("a and b before call: " + a + " " + b);

ob.meth(a, b);

System.out.println("a and b after call: " +a + " " + b);

}

}

output :

a and b before call: 15 20

a and b after call: 15 20

CMRTC

II B.tech I Semester(IT) 32 Object Oriented Programming

we can see, the operations that occur inside meth() have no effect on the values of a and b

used in the call; their values here did not change to 30 and 10.

When we pass an object to a method, the situation changes dramatically, because objects are

passed by reference. Keep in mind that when you create a variable of a class type, you are only

creating a reference to an object. Thus, when you pass this reference to a method, the parameter

that receives it will refer to the same object as that referred to by the argument. This effectively

means that objects are passed to methods by use of call-by-reference. Changes to the object

inside the method do affect the object used as an argument.

Example:

// Objects are passed by reference.

class Test {

int a, b;

Test(int i, int j) {

a = i;

b = j;

}

// pass an object

void meth(Test o)

{

o.a *= 2;

o.b /= 2;

}

}

class CallByRef

{

public static void main(String args[])

{

Test ob = new Test(15, 20);

System.out.println("ob.a and ob.b before call: " +ob.a + " " + ob.b);

ob.meth(ob);

System.out.println("ob.a and ob.b after call: " +ob.a + " " + ob.b);

}

}

output:

ob.a and ob.b before call: 15 20

ob.a and ob.b after call: 30 10

in this case, the actions inside meth() have affected the object used as an argument.

Recursion:

Java supports recursion. Recursion is the process of defining something in terms of itself. As it

relates to Java programming, recursion is the attribute that allows a method to call itself. A method

that calls itself is said to be recursive.

The classic example of recursion is the computation of the factorial of a number.

The factorial of a number N is the product of all the whole numbers between 1 and N.

For example, 3 factorial is 1 × 2 × 3, or 6. Here is how a factorial can be computed by

use of a recursive method:

// A simple example of recursion.

class Factorial

{

CMRTC

II B.tech I Semester(IT) 33 Object Oriented Programming

// this is a recursive function

int fact(int n)

{

int result;

if(n==1) return 1;

result = fact(n-1) * n;

return result;

}

}

class Recursion {

public static void main(String args[]) {

Factorial f = new Factorial();

System.out.println("Factorial of 3 is " + f.fact(3));

System.out.println("Factorial of 4 is " + f.fact(4));

System.out.println("Factorial of 5 is " + f.fact(5));

}}

Output:

Factorial of 3 is 6

Factorial of 4 is 24

Factorial of 5 is 120

String Handling:

In Java a string is a sequence of characters. But, unlike many other languages that implement

strings as character arrays, Java implements strings as objects of type String.

Implementing strings as built-in objects allows Java to provide a full complement of features

that make string handling convenient.

when you create a String object, you are creating a string that cannot be changed. That is, once

a String object has been created, you cannot change the characters that comprise that string. The

difference is that each time you need an altered version of an existing string, a new String object

is created that contains the modifications. The original string is left unchanged. This approach is

used because fixed, immutable strings can be implemented more efficiently than changeable ones.

For those cases in which a modifiable string is desired, there is a companion class to String called

StringBuffer, whose objects contain strings that can be modified after they are created.

Both the String and StringBuffer classes are defined in java.lang. Thus, they are available to all

programs automatically. Both are declared final, which means that neither of these classes may

be subclassed.

The String Constructors:

The String class supports several constructors. To create an empty String, you call the

default constructor.

For example,

String s = new String();

will create an instance of String with no characters in it.Frequently, you will want to create

strings that have initial values. The String class provides a variety of constructors to handle this.

To create a String initialized by an array of characters, use the constructor shown here:

String(char chars[])

Example:

char chars[] = { 'a', 'b', 'c' };

CMRTC

II B.tech I Semester(IT) 34 Object Oriented Programming

String s = new String(chars);

This constructor initializes s with the string ―abc‖.

You can specify a subrange of a character array as an initializer using the following constructor:

String(char chars[], int startIndex, int numChars)

Here, startIndex specifies the index at which the subrange begins, and numChars specifies the

number of characters to use.

Example:

char chars[] = { 'a', 'b', 'c', 'd', 'e', 'f' };

String s = new String(chars, 2, 3);

This initializes s with the characters cde.

You can construct a String object that contains the same character sequence as

another String object using this constructor:

String(String strObj)

Here, strObj is a String object.

String Length:

The length of a string is the number of characters that it contains. To obtain this value, call the
length() method.

int length()

Example:

char chars[] = { 'a', 'b', 'c' };

String s = new String(chars);

System.out.println(s.length());

It prints 3 as the output since the string as 3 characters.

charAt()

To extract a single character from a String, you can refer directly to an individual character via

the charAt() method. It has this general form:

char charAt(int where)

getChars()

If you need to extract more than one character at a time, you can use the getChars() method. It

has this general form:

void getChars(int sourceStart, int sourceEnd, char target[], int targetStart)

equals()

To compare two strings for equality, use equals(). It has this general form:

boolean equals(Object str)

Here, str is the String object being compared with the invoking String object. It returns true if

the strings contain the same characters in the same order, and false otherwise. The comparison

is case-sensitive.

To perform a comparison that ignores case differences, call equalsIgnoreCase().When it

compares two strings, it considers A-Z to be the same as a-z. It has this general form:

boolean equalsIgnoreCase(String str)

Here, str is the String object being compared with the invoking String object.

compareTo()

CMRTC

II B.tech I Semester(IT) 35 Object Oriented Programming

to know whether two strings are identical. For sorting applications, you need to know which is

less than, equal to, or greater than the next. A string is less than another if it comes before the

other in dictionary order. A string is

greater than another if it comes after the other in dictionary order. The String method

compareTo() serves this purpose. It has this general form:

int compareTo(String str)

Here, str is the String being compared with the invoking String.

indexOf()

The String class provides two methods that allow you to search a string for a specified character

or substring:

 indexOf() Searches for the first occurrence of a character or substring.

 lastIndexOf() Searches for the last occurrence of a character or substring.

substring()

we can extract a substring using substring(). It has two forms. The first is

String substring(int startIndex)

Here, startIndex specifies the index at which the substring will begin. This form returns a copy

of the substring that begins at startIndex and runs to the end of the invoking string.

The second form of substring() allows you to specify both the beginning and ending index of

the substring:

String substring(int startIndex, int endIndex)

Here, startIndex specifies the beginning index, and endIndex specifies the stopping point. The

string returned contains all the characters from the beginning index, up to,but not including, the

ending index.

replace()

The replace() method replaces all occurrences of one character in the invoking string with

another character. It has the following general form:

String replace(char original, char replacement)

StringBuffer Constructors:

StringBuffer defines these three constructors:
StringBuffer()

StringBuffer(int size)

StringBuffer(String str)

The default constructor (the one with no parameters) reserves room for 16 characters without

reallocation. The second version accepts an integer argument that explicitly sets the size of the

buffer. The third version accepts a String argument that sets the initial contents of the

StringBuffer object and reserves room for 16 more

characters without reallocation. StringBuffer allocates room for 16 additional characters when

no specific buffer length is requested, because reallocation is a costly process in terms of time.

Also, frequent reallocations can fragment memory. By allocating room for a few extra characters,

StringBuffer reduces the number of reallocations that take place.

length() and capacity()

The current length of a StringBuffer can be found via the length() method, while the total

allocated capacity can be found through the capacity() method. They have the following general

forms:

int length()

CMRTC

II B.tech I Semester(IT) 36 Object Oriented Programming

int capacity()

ensureCapacity()

If you want to preallocate room for a certain number of characters after a StringBuffer has been

constructed, you can use ensureCapacity() to set the size of the buffer. ensureCapacity() has

this general form:

void ensureCapacity(int capacity)

Here, capacity specifies the size of the buffer

append()

The append() method concatenates the string representation of any other type of data to the end

of the invoking StringBuffer object. It has overloaded versions for all the built-in types and for

Object. Here are a few of its forms:

StringBuffer append(String str)

StringBuffer append(int num)

StringBuffer append(Object obj)

String.valueOf() is called for each parameter to obtain its string representation.

insert()

The insert() method inserts one string into another.

StringBuffer insert(int index, String str)

StringBuffer insert(int index, char ch)

StringBuffer insert(int index, Object obj)

Here, index specifies the index at which point the string will be inserted into the invoking

StringBuffer object

reverse()

You can reverse the characters within a StringBuffer object using reverse(), shown here:

StringBuffer reverse()

This method returns the reversed object on which it was called

delete() and deleteCharAt()

to delete characters using the methods delete() and deleteCharAt(). These methods are shown

here:

StringBuffer delete(int startIndex, int endIndex)

StringBuffer deleteCharAt(int loc)

The delete() method deletes a sequence of characters from the invoking object. Here, startIndex

specifies the index of the first character to remove, and endIndex specifies an index one past the

last character to remove. Thus, the substring deleted runs from startIndex to endIndex–1. The

resulting StringBuffer object is returned.

The deleteCharAt() method deletes the character at the index specified by loc. It returns the

resulting StringBuffer object

replace()

to replaces one set of characters with another set inside a StringBuffer object. Its signature is

shown here:

StringBuffer replace(int startIndex, int endIndex, String str)

The substring being replaced is specified by the indexes startIndex and endIndex. Thus, the

substring at startIndex through endIndex–1 is replaced.

CMRTC

II B.tech I Semester(IT) 37 Object Oriented Programming

Inheritance

Hierarchical Abstractions

Example:

 Abstraction consists of eliminating unnecessary detail and concentrating on essential

features

 The concept of an evergreen tree is an abstraction

 Fir trees, Thuya trees, Pine trees, ... have features that are common to all evergreen trees

 The concept of a deciduous tree is an abstraction

 Maple trees, Oak trees, Apple trees, ... have features that are common to all deciduous

trees

Inheritance is a Java language feature, used to model hierarchical abstraction

Inheritance means taking a class (called the base class) and defining a new class (called the

subclass) by specializing the state and behaviors of the base class

Subclasses specialize the behaviors of their base class

 The subclasses inherit the state and behaviors of their base class

 They can have additional state and behaviors

Inheritance is mainly used for code reusability and to reduce the complexity of the program.

Base Class:

A class that is being inherited is known as Base class

For ex:

Class x

{

Void method ();

}

class y extends x

{

}

In the above example the class x is known as the base class.

When we create an object for the base class then that object is known as base class object.

CMRTC

II B.tech I Semester(IT) 38 Object Oriented Programming

Sub class:

The class that is inheriting the base class Is known as sub class.
In the example above since class y is inheriting the class x, class y is known as the subclass to

class x.

Forms of inheritance:

1. Single Level Inheritance:

When one base class is being inherited by one sub class then that kind of inheritance

is known as single level inheritance.

2. Multi Level Inheritance:

When a sub class is in turn being inherited then that kind of inheritance is known as

multi level inheritance.

3. Hierarchical Inheritance:

When a base class is being inherited by one or more sub class then that kind of

inheritance is known as hierarchical inheritance.

A sub class uses the keyword ―extends‖ to inherit a base class.

Example for Single Inheritance

class x

{

int a;

void display()

{

a=0;

System.out.println(a);

}

}

class y extends x

{

int b;

void show()

{

B=1;

System.out.println(b);

}

}

class show_main

{

Public static void main(String args[])

{

y y1=new y();

y1.display();

y1.show();

}

}

Output:

0

1

Since the class y is inheriting class x, it is able to access the members of class x.

Hence the method display() can be invoked by the instance of the class y.

CMRTC

II B.tech I Semester(IT) 39 Object Oriented Programming

Example for multilevel inheritance:

class x
{

int a;

void display()

{

a=0;

System.out.println(a);

}

}

class y extends x

{

int b;

void show()

{

B=1;

System.out.println(b);

}

}

class z extends y

{

Int c;

void show1()

{

c=2;

System.out.println(c);

}

}

class show_main

{

Public static void main(String args[])

{

z z1=new z();

z1.display();

z1.show();

}

}

Output

0
1

2

Since class z is inheriting class y which is in turn a sub class of the class x, indirectly z

can access the members of class x.

Hence the instance of class z can access the display () method in class x, the show ()

method in class y.

Problems:

In java multiple level inheritance is not possible easily. We have to make use of a

concept called interfaces to achieve it.

Access Specifers:

CMRTC

II B.tech I Semester(IT) 40 Object Oriented Programming

The different access specifiers used are

1. Public

2. Private

3. Protected

4. Default

5. Privateprotected

1. Private members can be accessed only within the class in which they are declared.

2. Protected members can be accessed inside the class in which they are declared and

also in the sub classes in the same package and sub classes in the other packages.

3. Default members are accessed by the methods in their own class and in the sub classes

of the same package.

4. Public members can be accessed anywhere.

Super Keyword:

Whenever a sub class needs to refer to its immediate super class, we can use the super

keyword.

Super has two general forms

1. The first calls the super class constructor.

2. The second is used to access a member of the super class that has been hidden by a

member of a sub class

Syntax:

A sub class can call a constructor defined by its super class by use of the following form

of super.

super(arg-list);

here arg-list specifies any arguments needed by the constructor in the super class .

The second form of super acts like a ―this‖ keyword. The difference between ―this‖ and

―super‖ is that ―this‖ is used to refer the current object where as the super is used to refer

to the super class.

The usage has the following general form:

super.member;

Example:

Class x

{

int a;

x()

{

a=0;

}

void display()

{

System.out.println(a);

}

}

class y extends x

{

int b;

y()

{

CMRTC

II B.tech I Semester(IT) 41 Object Oriented Programming

super();

b=1;

}

Void display()

{

Super.display();

System.out.println(b);

}

}

class super_main

{

Public static void main(String args[])

{

y y1=new y();

y.display();

}

}

Using final with inheritance:

The keyword final has three uses.
1. First it can be used to create the equivalent of a named constant.

2. To prevent overriding.

3. To prevent inheritance.

Using final to prevent overriding:

To disallow a method from being overridden, specify final as a modifier at the start of the

declaration.

Methods declared as final cannot be overridden.

Syntax:

final <return type> <method name> (argument list);

Using final with inheritance:

Some times we may want to prevent a class from being inherited.

In order to do this we must precede the class declaration with final.

Declaring a class as final implicitly declares all its methods as final.

Example:

final class A

{

………//members

}

Polymorphism- dynamic binding:

Dynamic binding is a binding in which the class association is not made until the object

is created at execution time. It is also called as late binding.

In java, base class reference can be assigned objects of sub class. When methods of sub

class object are called through base class’s reference. The mapping / binding or function calls to

respective function takes place after running the program, atleast possible moment. This kind of

binding is known as ―late binding‖ or ―dynamic binding‖ or ―runtime polymorphism‖.

Eg.

class A

CMRTC

II B.tech I Semester(IT) 42 Object Oriented Programming

{

public void display()

{ }

}

class B extends A

{

public void display()

{ }

}

class C extends A

{

public void display()

{ }

}

class DispatchDemo

{

psvm (String args[])

{

A ob1= new A();

B ob2 = new B();

C ob3 = new C();

A r;

r=ob1;

r.display();

r=ob2;

r.display();

r=ob3;

r.display();

}

}

In the above programs, the statement r.display(), calls the display() method and based

on the object. That has been assigned to base class reference. i.e. r. But the mapping / binding as

to which method is to be invoked is done only at run time.

Method Overriding:

In a class hierarchy, when a method in a subclass has the same name and type signature as

a method in its superclass, then the method in the subclass is said to override the method in the

superclass. When an overridden method is called from within a subclass, it will always refer to

the version of that method defined by the subclass. The version of the method defined by the

superclass will be hidden. Consider the following:

// Method overriding.

class A {

int i, j;

A(int a, int b) {

i = a;

j = b;

}

// display i and j

void show() {

System.out.println("i and j: " + i + " " + j);

}}

class B extends A {

CMRTC

II B.tech I Semester(IT) 43 Object Oriented Programming

int k;

B(int a, int b, int c) {

super(a, b);

k = c;

} // display k – this overrides show() in A

void show() {

System.out.println("k: " + k);

}}

class Override {

public static void main(String args[]) {

B subOb = new B(1, 2, 3);

subOb.show(); // this calls show() in B

}}

The output produced by this program is shown here:

k: 3

When show() is invoked on an object of type B, the version of show() defined within B is

used. That is, the version of show() inside B overrides the version declared in A.

Abstract classes and methods:

We can require that some methods be overridden by sub classes by specifying the abstract type

modifier.

These methods are sometimes referred to as sub classer responsibility as they have no

implementation specified in the super class.

Thus a sub class must override them.

To declare an abstract method we have:

abstract type name (parameter list);

Any class that contains one or more abstract methods must also be declared abstract..

Such types of classes are known as abstract classes.

Abstract classes can contain both abstract and non-abstract methods.

Let us consider the following example:

abstract class A

{

abstract void callme();

void call()

{

System.out.println(―HELLO‖);

}}

class B extends A

{

Void callme()

{

System.out.println(―GOOD MORNING‖);

}}

class abstractdemo

{

Public static void main(String args[]){

B b=new B();

b.callme();

b.call();

}}

Output:

CMRTC

II B.tech I Semester(IT) 44 Object Oriented Programming

GOOD MORINING

HELLO

UNIT-II

Packages and Interfaces

CMRTC

II B.tech I Semester(IT) 45 Object Oriented Programming

Packages and interfaces are two of the basic components of a Java program. In

general, a Java source file can contain any (or all) of the following four internal parts:

■ A single package statement (optional)

■ Any number of import statements (optional)

■ a single public class declaration (required)

■ Any number of classes private to the package (optional)

Java provides a mechanism for partitioning the class name space into more manageable chunks.

This mechanism is the package. The package is both a naming and a visibility control mechanism.

You can define classes inside a package that are not accessible by code outside that package. You

can also define class members that are only exposed to other members of the same package.

Defining a Package:

Creating a package is quite easy: simply include a package command as the first statement in a

Java source file. Any classes declared within that file will belong to the specified package. The

package statement defines a name space in which classes are stored.

If you omit the package statement, the class names are put into the default package, which has no

name. While the default package is fine for short, sample programs, it is inadequate for real

applications. Most of the time, you will define a package for your code.

Creating a Package:

The general form of the package statement:
package pkg;

Here, pkg is the name of the package.

For example, the following statement creates a package called MyPackage.

package MyPackage;

Java uses file system directories to store packages. For example, the .class files for any classes

you declare to be part of MyPackage must be stored in a directory called MyPackage.

Remember that case is significant, and the directory name must match the

package name exactly.

More than one file can include the same package statement. The package statement

simply specifies to which package the classes defined in a file belong. It does not exclude

other classes in other files from being part of that same package. You can create a hierarchy of

packages. To do so, simply separate each package name from the one above it by use of a period.

The general form of a multileveled package statement is shown here:

package pkg1[.pkg2[.pkg3]];

A package hierarchy must be reflected in the file system of your Java development

system.

For example, a package declared as

package java.awt.image;

needs to be stored in java/awt/image, java\awt\image, or java:awt:image on your

UNIX, Windows, or Macintosh file system, respectively. Be sure to choose your package names

carefully. You cannot rename a package without renaming the directory in which the classes are

stored.

Finding Packages and CLASSPATH:

Java run-time system know where to look for packages that you create? The answer

has two parts.

CMRTC

II B.tech I Semester(IT) 46 Object Oriented Programming

 First, by default, the Java run-time system uses the current working directory as its starting

point. Thus, if your package is in the current directory, or a subdirectory of the current

directory, it will be found.

 Second, you can specify a directory path or paths by setting the CLASSPATH

environmental variable.
For example, consider the following package specification.

package MyPack;

In order for a program to find MyPack, one of two things must be true. Either the program is

executed from a directory immediately above MyPack, or CLASSPATH must be set to include

the path to MyPack. The first alternative is the easiest (and doesn’t require a change to

CLASSPATH), but the second alternative lets your program find MyPack no matter what

directory the program is in.

Create the package directories below your current development directory, put the .class files into

the appropriate directories and then execute the programs from the development directory.

Example:

// A simple package

package MyPack;

class Balance

{

String name;

double bal;

Balance(String n, double b)

{

name = n;

bal = b;

}

void show()

{

if(bal<0)

System.out.print("--> ");

System.out.println(name + ": $" + bal);

}

}

class AccountBalance

{

public static void main(String args[])

{

Balance current[] = new Balance[3];

current[0] = new Balance("K. J. Fielding", 123.23);

current[1] = new Balance("Will Tell", 157.02);

current[2] = new Balance("Tom Jackson", -12.33);

for(int i=0; i<3; i++)

current[i].show();

}

}

Save this file as AccountBalance.java, and put it in a directory called MyPack. Next, compile

the file. Make sure that the resulting .class file is also in the MyPack directory. Executing the

AccountBalance class, using the following command line:

java MyPack.AccountBalance

CMRTC

II B.tech I Semester(IT) 47 Object Oriented Programming

Remember, we should be in the directory above MyPack when you execute this command, or to

have your CLASSPATH environmental variable set appropriately.

AccountBalance is now part of the package MyPack. This means that it cannot be executed by

itself.

That is, you cannot use this command line:

java AccountBalance

AccountBalance must be qualified with its package name.

Access Protection:

Classes and packages are both means of encapsulating and containing the name space and scope

of variables and methods. Packages act as containers for classes and other subordinate packages.

Classes act as containers for data and code. The class is Java’s smallest unit of abstraction.

Because of the interplay between classes and packages, Java addresses four categories of visibility

for class members:

Subclasses in the same package

Non-subclasses in the same package

Subclasses in different packages

Classes that are neither in the same package nor subclasses

Table: Class member access

The three access specifiers, private, public, and protected, provide a variety of ways to produce

the many levels of access required by these categories.

A class has only two possible access levels: default and public. When a class is declared as public,

it is accessible by any other code. If a class has default access, then it can only be accessed by

other code within its same package.

Example:

This is file Protection.java:

package p1;

public class Protection

{

int n = 1;

 Private No modifier Protected Public

Same class Yes Yes Yes Yes

Same package

subclass

No Yes Yes Yes

Same package

non-subclass

No Yes Yes Yes

Different

Package subclass

No No Yes Yes

Different package

non-subclass

No No No Yes

CMRTC

II B.tech I Semester(IT) 48 Object Oriented Programming

private int n_pri = 2;

protected int n_pro = 3;

public int n_pub = 4;

public Protection()

{

System.out.println("base constructor");

System.out.println("n = " + n);

System.out.println("n_pri = " + n_pri);

System.out.println("n_pro = " + n_pro);

System.out.println("n_pub = " + n_pub);

}

}

This is file Derived.java:

package p1;

class Derived extends Protection

{

Derived()

{

System.out.println("derived constructor");

System.out.println("n = " + n);

// class only

// System.out.println("n_pri = " + n_pri);

System.out.println("n_pro = " + n_pro);

System.out.println("n_pub = " + n_pub);

}

}

This is file SamePackage.java:

package p1;

class SamePackage

{

SamePackage()

{

Protection p = new Protection();

System.out.println("same package constructor");

System.out.println("n = " + p.n);

// class only

// System.out.println("n_pri = " + p.n_pri);

System.out.println("n_pro = " + p.n_pro);

System.out.println("n_pub = " + p.n_pub);

}

}

This is file Protection2.java:

package p2;

class Protection2 extends p1.Protection

{

Protection2()

{

System.out.println("derived other package constructor");

// class or package only

// System.out.println("n = " + n);

CMRTC

II B.tech I Semester(IT) 49 Object Oriented Programming

// class only

// System.out.println("n_pri = " + n_pri);

System.out.println("n_pro = " + n_pro);

System.out.println("n_pub = " + n_pub);

}

}

This is file OtherPackage.java:

package p2;

class OtherPackage

{

OtherPackage()

{

p1.Protection p = new p1.Protection();

System.out.println("other package constructor");

// class or package only

// System.out.println("n = " + p.n);

// class only

// System.out.println("n_pri = " + p.n_pri);

// class, subclass or package only

// System.out.println("n_pro = " + p.n_pro);

System.out.println("n_pub = " + p.n_pub);

}

}

If you wish to try these two packages, here are two test files you can use. The one

for package p1 is shown here:

// Demo package p1.

package p1;

// Instantiate the various classes in p1.

public class Demo

{

public static void main(String args[])

{

Protection ob1 = new Protection();

Derived ob2 = new Derived();

SamePackage ob3 = new SamePackage();

}

}

The test file for p2 is shown next:

// Demo package p2.

package p2;

// Instantiate the various classes in p2.

public class Demo

{

public static void main(String args[])

{

Protection2 ob1 = new Protection2();

OtherPackage ob2 = new OtherPackage();

}

}

Importing Packages:

CMRTC

II B.tech I Semester(IT) 50 Object Oriented Programming

Java includes the import statement to bring certain classes, or entire packages, into visibility.

Once imported, a class can be referred to directly, using only its name. The import statement is

convenient.

In a Java source file, import statements occur immediately following the package statement (if

it exists) and before any class definitions.

This is the general form of the import statement:

import pkg1[.pkg2].(classname|*);

Here, pkg1 is the name of a top-level package, and pkg2 is the name of a subordinate package

inside the outer package separated by a dot (.). There is no practical limit on the depth of a package

hierarchy, except that imposed by the file system. Finally, you specify either an explicit classname

or a star (*), which indicates that the Java compiler should import the entire package. This code

fragment shows both forms in use:

import java.util.Date;

import java.io.*;

The star form may increase compilation time—especially if you import several large packages.

For this reason it is a good idea to explicitly name the classes that you want to use rather than

importing whole packages. However, the star form has absolutely no effect on the run-time

performance or size of your classes.

All of the standard Java classes included with Java are stored in a package called java. The basic

language functions are stored in a package inside of the java package called java.lang. Normally,

you have to import every package or class that you want to use.

If a class with the same name exists in two different packages that you import using the star form,

the compiler will remain silent, unless you try to use one of the classes. In that case, you will get

a compile-time error and have to explicitly name the class specifying its package.

when a package is imported, only those items within the package declared as public will be

available to non-subclasses in the importing code.

For example, if you want the Balance class of the package MyPack shown earlier to be

available as a stand-alone class for general use outside of MyPack, then you will need to

declare it as public and put it into its own file, as shown here:

package MyPack;

/* Now, the Balance class, its constructor, and its

show() method are public. This means that they can

be used by non-subclass code outside their package.

*/

public class Balance

{

String name;

double bal;

public Balance(String n, double b)

{

name = n;

bal = b;

}

public void show()

{

if(bal<0)

System.out.print("--> ");

System.out.println(name + ": $" + bal);

}

CMRTC

II B.tech I Semester(IT) 51 Object Oriented Programming

}

As you can see, the Balance class is now public. Also, its constructor and its show() method are

public, too. This means that they can be accessed by any type of code outside the MyPack

package. For example, here TestBalance imports MyPack and is then able to make use of the

Balance class:

import MyPack.*;

class TestBalance

{

public static void main(String args[])

{

/* Because Balance is public, you may use Balance

class and call its constructor. */

Balance test = new Balance("J. J. Jaspers", 99.88);

test.show(); // you may also call show()

}

}

Interfaces

Using the keyword interface, you can fully abstract a class’ interface from its implementation.That

is, using interface, you can specify what a class must do, but not how it does it. Interfaces are

syntactically similar to classes, but they lack instance varia bles, and their methods are declared

without any body. In practice, this means that you can define interfaces which don’t make

assumptions about how they are implemented.

Once it is defined, any number of classes can implement an interface. Also, one class can

implement any number of interfaces.

To implement an interface, a class must create the complete set of methods defined by the

interface. Each class can determine the details of its own implementation. By providing the

interface keyword, Java allows you to fully utilize the ―one interface, multiple methods‖ aspect

of polymorphism.

 Interfaces are designed to support dynamic method resolution at run time.

Normally, in order for a method to be called from one class to another, both classes need to be

present at compile time so the Java compiler can check to ensure that the method signatures are

compatible. This requirement by itself makes for a static and no extensible classing environment.

Inevitably in a system like this, functionality gets pushed up higher and higher in the class

hierarchy so that the mechanisms will be available to more and more subclasses. Interfaces are

designed to avoid this problem. They disconnect the definition of a method or set of methods from

the inheritance hierarchy. Since interfaces are in a different hierarchy from classes, it is possible

for classes that are unrelated in terms of the class hierarchy to implement the same interface. This

is where the real power of interfaces is realized.

Interfaces add most of the functionality that is required for many applications which would

normally resort to using multiple inheritance in a language such as C++.

Defining an Interface:

An interface is defined much like a class.

This is the general form of an interface:

access interface name

{

return-type method-name1(parameter-list);

return-type method-name2(parameter-list);

type final-varname1 = value;

type final-varname2 = value;

CMRTC

II B.tech I Semester(IT) 52 Object Oriented Programming

return-type method-nameN(parameter-list);

type final-varnameN = value;

}

Here, access is either public or not used. When no access specifier is included, then default access

results, and the interface is only available to other members of the package in which it is declared.

When it is declared as public, the interface can be used by any other code. name is the name of

the interface, and can be any valid identifier. Notice that the methods which are declared have no

bodies. They end with a semicolon

after the parameter list. They are, essentially, abstract methods; there can be no default

implementation of any method specified within an interface. Each class that includes an

interface must implement all of the methods.

Variables can be declared inside of interface declarations. They are implicitly final and static,

meaning they cannot be changed by the implementing class. They must also be initialized with a

constant value. All methods and variables are implicitly public if the interface, itself, is declared

as public.

An example of an interface definition. It declares a simple interface which contains one method

called callback() that takes a single integer parameter.

interface Callback

{

void callback(int param);

}

Implementing Interfaces:

Once an interface has been defined, one or more classes can implement that interface.
To implement an interface, include the implements clause in a class definition, and then create

the methods defined by the interface.

The general form of a class that implements the interface:

access class classname [extends superclass][implements interface [,interface...]]

{

// class-body

}

Here, access is either public or not used. If a class implements more than one interface,the

interfaces are separated with a comma. If a class implements two interfaces that declare the

same method, then the same method will be used by clients of either interface. The methods that

implement an interface must be declared public. Also, the type signature of the implementing

method must match exactly the type signature specified in the interface definition.

Example:class that implements the Callback interface shown earlier.

class Client implements Callback

{

public void callback(int p)

{

System.out.println("callback called with " + p);

}

}

Notice that callback() is declared using the public access specifier.When you implement an

interface method, it must be declared as public.

For example, the following version of Client implements callback() and adds the method

nonIfaceMeth():

class Client implements Callback

{

CMRTC

II B.tech I Semester(IT) 53 Object Oriented Programming

public void callback(int p)

{

System.out.println("callback called with " + p);

}

void nonIfaceMeth()

{

System.out.println("Classes that implement interfaces"+"may also define other members, too.");

}

}

Accessing Implementations Through Interface References:

We can declare variables as object references that use an interface rather than a class type. Any

instance of any class that implements the declared interface can be referred to by such a variable.

When you call a method through one of these references, the correct version will be called based

on the actual instance of the interface being referred to. This is one of the key features of interfaces.

The method to be executed is looked up dynamically at run time, allowing classes to be created

later than the code which calls methods on them. The calling code can dispatch through an

interface without having to know anything about the ―callee.‖ This process is similar to using a

superclass reference to access a subclass object.

Because dynamic lookup of a method at run time incurs a significant overhead when compared

with the normal method invocation in Java, you should be careful not to use interfaces casually in

performance-critical code.

The following example calls the callback() method via an interface reference variable:

class TestIface

{

public static void main(String args[])

{

Callback c = new Client();

c.callback(42);

}

}

Output:

callback called with 42

Notice that variable c is declared to be of the interface type Callback, yet it was assigned an

instance of Client. Although c can be used to access the callback() method, it cannot access any

other members of the Client class. An interface reference variable only has knowledge of the

methods declared by its interface declaration.

Thus, c could not be used to access nonIfaceMeth() since it is defined by Client but not Callback.

The preceding example shows, mechanically, how an interface reference variable can access an

implementation object, it does not demonstrate the polymorphic power of such a reference. To

sample this usage, first create the second implementation of Callback, shown here:

// Another implementation of Callback.

class AnotherClient implements Callback

{

public void callback(int p)

{

System.out.println("Another version of callback");

System.out.println("p squared is " + (p*p));

}

}

CMRTC

II B.tech I Semester(IT) 54 Object Oriented Programming

class TestIface2

{

public static void main(String args[])

{

Callback c = new Client();

AnotherClient ob = new AnotherClient();

c.callback(42);

c = ob; // c now refers to AnotherClient object

c.callback(42);

}

}

Output:

callback called with 42

Another version of callback

p squared is 1764

As you can see, the version of callback() that is called is determined by the type of object that c

refers to at run time.

If a class includes an interface but does not fully implement the methods defined by that

interface, then that class must be declared as abstract.

For example:

abstract class Incomplete implements Callback

{

int a, b;

void show()

{

System.out.println(a + " " + b);

}

}

Here, the class Incomplete does not implement callback() and must be declared as abstract. Any

class that inherits Incomplete must implement callback() or be declared abstract itself.

Applying Interfaces:

We define a stack interface, leaving it to each implementation to define the specifics. Let’s look

at two examples.

First, here is the interface that defines an integer stack. Put this in a file called IntStack.java.

This interface will be used by both stack implementations.

Example:

// Define an integer stack interface.

interface IntStack

{

void push(int item); // store an item

int pop(); // retrieve an item

}

The following program creates a class called FixedStack that implements a fixed-length version

of an integer stack:

Example:

// An implementation of IntStack that uses fixed storage.

class FixedStack implements IntStack

{

private int stck[];

CMRTC

II B.tech I Semester(IT) 55 Object Oriented Programming

private int tos;

FixedStack(int size)

{

stck = new int[size];

tos = -1;

}

// Push an item onto the stack

public void push(int item)

{

if(tos==stck.length-1) // use length member

System.out.println("Stack is full.");

else

stck[++tos] = item;

}

// Pop an item from the stack

public int pop()

{

if(tos < 0)

{

System.out.println("Stack underflow.");

return 0;

}

else

return stck[tos--];

}

}

class IFTest

{

public static void main(String args[])

{

FixedStack mystack1 = new FixedStack(5);

FixedStack mystack2 = new FixedStack(8);

// push some numbers onto the stack

for(int i=0; i<5; i++) mystack1.push(i);

for(int i=0; i<8; i++) mystack2.push(i);

// pop those numbers off the stack

System.out.println("Stack in mystack1:");

for(int i=0; i<5; i++)

System.out.println(mystack1.pop());

System.out.println("Stack in mystack2:");

for(int i=0; i<8; i++)

System.out.println(mystack2.pop());

}

}

Following is another implementation of IntStack that creates a dynamic stack by use of the same

interface definition. In this implementation, each stack is constructed with an initial length. If this

initial length is exceeded, then the stack is increased in size. Each time more room is needed, the

size of the stack is doubled.

Example:

// Implement a "growable" stack.

class DynStack implements IntStack

CMRTC

II B.tech I Semester(IT) 56 Object Oriented Programming

{

private int stck[];

private int tos;

// allocate and initialize stack

DynStack(int size)

{

stck = new int[size];

tos = -1;

}

// Push an item onto the stack

public void push(int item)

{

// if stack is full, allocate a larger stack

if(tos==stck.length-1)

{

int temp[] = new int[stck.length * 2]; // double size

for(int i=0; i<stck.length; i++)

temp[i] = stck[i];

stck = temp;

stck[++tos] = item;

}

else

stck[++tos] = item;

}

// Pop an item from the stack

public int pop()

{

if(tos < 0) {

System.out.println("Stack underflow.");

return 0;

}

else

return stck[tos--];

}

}

class IFTest2

{

public static void main(String args[])

{

DynStack mystack1 = new DynStack(5);

DynStack mystack2 = new DynStack(8);

// these loops cause each stack to grow

for(int i=0; i<12; i++) mystack1.push(i);

for(int i=0; i<20; i++) mystack2.push(i);

System.out.println("Stack in mystack1:");

for(int i=0; i<12; i++)

System.out.println(mystack1.pop());

System.out.println("Stack in mystack2:");

for(int i=0; i<20; i++)

System.out.println(mystack2.pop());

}

CMRTC

II B.tech I Semester(IT) 57 Object Oriented Programming

}

The following class uses both the FixedStack and DynStack implementations.It does so through

an interface reference. This means that calls to push() and pop()are resolved at run time rather

than at compile time.

/* Create an interface variable and access stacks through it.

*/

class IFTest3

{

public static void main(String args[])

{

IntStack mystack; // create an interface reference variable

DynStack ds = new DynStack(5);

FixedStack fs = new FixedStack(8);

mystack = ds; // load dynamic stack

// push some numbers onto the stack

for(int i=0; i<12; i++)

mystack.push(i);

mystack = fs; // load fixed stack

for(int i=0; i<8; i++)

mystack.push(i);

mystack = ds;

System.out.println("Values in dynamic stack:");

for(int i=0; i<12; i++)

System.out.println(mystack.pop());

mystack = fs;

System.out.println("Values in fixed stack:");

for(int i=0; i<8; i++)

System.out.println(mystack.pop());

}

}

In this program, mystack is a reference to the IntStack interface. Thus, when it refers to ds, it uses

the versions of push() and pop() defined by the DynStack implementation. When it refers to fs,

it uses the versions of push() and pop() defined by FixedStack.

These determinations are made at run time. Accessing multiple implementations of an interface

through an interface reference variable is the most powerful way that Java achieves run-time

polymorphism.

Variables in Interfaces:

Interfaces can be used to import shared constants into multiple
classes by simply declaring an interface that contains variables which are initialized to the desired

values. When we include that interface in a class (that is, when you ―implement‖ the interface),

all of those variable names will be in scope as constants. This is similar to using a header file in

C/C++ to create a large number of #defined constants or const declarations. If an interface contains

no methods, then any class that includes such an interface doesn’t actually implement anything.

It is as if that class were importing the constant variables into the class name space as final

variables.

Example:

import java.util.Random;

interface SharedConstants

CMRTC

II B.tech I Semester(IT) 58 Object Oriented Programming

{

int NO = 0;

int YES = 1;

int MAYBE = 2;

int LATER = 3;

int SOON = 4;

int NEVER = 5;

}

class Question implements SharedConstants

{

Random rand = new Random();

int ask()

{

int prob = (int) (100 * rand.nextDouble());

if (prob < 30)

return NO; // 30%

else if (prob < 60)

return YES; // 30%

else if (prob < 75)

return LATER; // 15%

else if (prob < 98)

return SOON; // 13%

else

return NEVER; // 2%

}

}

class AskMe implements SharedConstants

{

static void answer(int result)

{

switch(result)

{

case NO:

System.out.println("No");

break;

case YES:

System.out.println("Yes");

break;

case MAYBE:

System.out.println("Maybe");

break;

case LATER:

System.out.println("Later");

break;

case SOON:

System.out.println("Soon");

break;

case NEVER:

System.out.println("Never");

break;

}

CMRTC

II B.tech I Semester(IT) 59 Object Oriented Programming

}

public static void main(String args[])

{

Question q = new Question();

answer(q.ask());

answer(q.ask());

answer(q.ask());

answer(q.ask());

}

}

Output:

Later

Soon

No

Yes

This program makes use of one of Java’s standard classes: Random. This class provides

pseudorandom numbers. It contains several methods which allow you to obtain random numbers

in the form required by your program. In this example, the method nextDouble() is used. It returns

random numbers in the range 0.0 to 1.0.

In this sample program, the two classes, Question and AskMe, both implement the

SharedConstants interface where NO, YES, MAYBE, SOON, LATER, and NEVER are defined.

Inside each class, the code refers to these constants as if each class had defined

or inherited them directly.

Interfaces Can Be Extended:

One interface can inherit another by use of the keyword extends. The syntax is the same as for

inheriting classes. When a class implements an interface that inherits another interface, it must

provide implementations for all methods defined within the interface inheritance chain.

Example:

// One interface can extend another.

interface A

{

void meth1();

void meth2();

}

// B now includes meth1() and meth2() -- it adds meth3().

interface B extends A

{

void meth3();

}

// this class must implement all of A and B

class MyClass implements B

{

public void meth1()

{

System.out.println("Implement meth1().");

}

public void meth2()

CMRTC

II B.tech I Semester(IT) 60 Object Oriented Programming

{

System.out.println("Implement meth2().");

}

public void meth3()

{

System.out.println("Implement meth3().");

}

}

class IFExtend

{

public static void main(String arg[])

{

MyClass ob = new MyClass();

ob.meth1();

ob.meth2();

ob.meth3();

}

}

Any class that implements an interface must implement all methods defined by that interface,

including any that are inherited from other interfaces.

EXPLORING JAVA.IO PACKAGE:

java.io, which provides support for I/O operations Data is retrieved from an input source. The

results of a program are sent to an output destination. In Java, these sources or destinations are

defined very broadly. For example, a network connection, memory buffer, or disk file can be

manipulated by the Java I/O classes. Although physically different, these devices are all handled

by the same abstraction: the stream. A stream is a logical entity that either produces or consumes

information. A stream is linked to a physical device by the Java I/O system. All streams behave

in the same manner, even if the actual physical devices they are linked to differ.

Some of the I/O classes defined by java.io are:

FileWriter, BufferedOutputStream, FilterInputStream, BufferedReader, FilterOutputStream,

BufferedWriter, FilterReader, DataInputStream, RandomAccessFile

DataOutputStream.

File:

most of the classes defined by java.io operate on streams, the File class does not. It deals directly

with files and the file system. That is, the File class does not specify how information is retrieved

from or stored in files; it describes the properties of a file itself. A File object is used to obtain or

manipulate the information associated with a disk file, such as the permissions, time, date, and

directory path, and to navigate subdirectory hierarchies.

Files are a primary source and destination for data within many programs.Files are still a central

resource for storing persistent and shared information. A directory in Java is treated simply as a

File with one additional property—a list of filenames that can be examined by the list() method.

The following constructors can be used to create File objects:

CMRTC

II B.tech I Semester(IT) 61 Object Oriented Programming

File(String directoryPath)

File(String directoryPath, String filename)

File(File dirObj, String filename)

File(URI uriObj)

Here, directoryPath is the path name of the file, filename is the name of the file, dirObj is a File

object that specifies a directory, and uriObj is a URI object that describes a file.

The following example demonstrates several of the File methods:

// Demonstrate File.

import java.io.File;

class FileDemo

{

static void p(String s)

{

System.out.println(s);

}

public static void main(String args[])

{

File f1 = new File("/java/COPYRIGHT");

p("File Name: " + f1.getName());

p("Path: " + f1.getPath());

p("Abs Path: " + f1.getAbsolutePath());

p("Parent: " + f1.getParent());

p(f1.exists() ? "exists" : "does not exist");

p(f1.canWrite() ? "is writeable" : "is not writeable");

p(f1.canRead() ? "is readable" : "is not readable");

p("is " + (f1.isDirectory() ? "" : "not" + " a directory"));

p(f1.isFile() ? "is normal file" : "might be a named pipe");

p(f1.isAbsolute() ? "is absolute" : "is not absolute");

p("File last modified: " + f1.lastModified());

p("File size: " + f1.length() + " Bytes");

}

}

When you run this program, you will see something similar to the following:

File Name: COPYRIGHT

Path: /java/COPYRIGHT

Abs Path: /java/COPYRIGHT

Parent: /java

exists

is writeable

is readable

is not a directory

is normal file

is absolute

File last modified: 812465204000

File size: 695 Bytes

CMRTC

II B.tech I Semester(IT) 62 Object Oriented Programming

The Stream Classes:

Java’s stream-based I/O is built upon four abstract classes: InputStream, OutputStream,

Reader, and Writer. They are used to create several concrete stream subclasses. Although your

programs perform their I/O operations through concrete subclasses, the top-level classes define

the basic functionality common to all stream classes.

InputStream and OutputStream are designed for byte streams.

Reader and Writer are designed for character streams.

The byte stream classes and the character stream classes form separate hierarchies. In general,

you should use the character stream classes when working with characters or strings, and use the

byte stream classes when working with bytes or other binary objects.

Byte Stream Classes:

InputStream

InputStream is an abstract class that defines Java’s model of streaming byte input. All of the

methods in this class will throw an IOException on error conditions.

Some of the methods in this class are:

 int available(): Returns the number of bytes of input currently available for reading.

 void close(): Closes the input source. Further read attempts will generate an IOException.

 int read(): Returns an integer representation of the next available byte of input. –1 is

returned when the end of the file is encountered.

 int read(byte buffer[]): Attempts to read up to buffer.length bytes into buffer and returns

the actual number of bytes that were successfully read. –1 is returned when the end of the

file is encountered.

OutputStream

OutputStream is an abstract class that defines streaming byte output. All of the methods in this

class return a void value and throw an IOException in the case of errors.

Some of the methods in this class are:

 void close(): Closes the output stream. Further write attempts will generate an

IOException.

 void write(int b): Writes a single byte to an output stream. Note that the parameter is an

int, which allows you to call write() with expressions without having to cast them back
to byte.

 void write(byte buffer[]): Writes a complete array of bytes to an output stream.

1. FileInputStream

The FileInputStream class creates an InputStream that you can use to read bytes from

a file. Its two most common constructors are shown here:

FileInputStream(String filepath)

FileInputStream(File fileObj)

Either can throw a FileNotFoundException. Here, filepath is the full path name of a file,

and fileObj is a File object that describes the file.

2. FileOutputStream

FileOutputStream creates an OutputStream that you can use to write bytes to a file. Its

most commonly used constructors are shown here:

FileOutputStream(String filePath)

FileOutputStream(File fileObj)

FileOutputStream(String filePath, boolean append)

FileOutputStream(File fileObj, boolean append)

CMRTC

II B.tech I Semester(IT) 63 Object Oriented Programming

They can throw a FileNotFoundException or a SecurityException. Here, filePath is the full path

name of a file, and fileObj is a File object that describes the file. If append is true, the file is

opened in append mode

The Character Streams:

While the byte stream classes provide sufficient functionality to handle any type of I/O

operation, they cannot work directly with Unicode characters. Since one of the main

purposes of Java is to support the ―write once, run anywhere‖ philosophy, it was

necessary to include direct I/O support for characters. In this section, several of the

character I/O classes are discussed. As explained earlier, at the top of the character

stream hierarchies are the Reader and Writer abstract classes.

Reader

Reader is an abstract class that defines Java’s model of streaming character input. All of

the methods in this class will throw an IOException on error conditions. Table 17-3

provides a synopsis of the methods in Reader.

Writer

Writer is an abstract class that defines streaming character output. All of the methods

in this class return a void value and throw an IOException in the case of errors.

Table 17-4 shows a synopsis of the methods in Writer.

1. FileReader

The FileReader class creates a Reader that you can use to read the contents of a file. Its

two most commonly used constructors are shown here:

FileReader(String filePath)

FileReader(File fileObj)

2. FileWriter

FileWriter creates a Writer that you can use to write to a file. Its most commonly used

constructors are shown here:

FileWriter(String filePath)

FileWriter(String filePath, boolean append)

FileWriter(File fileObj)

FileWriter(File fileObj, boolean append)

They can throw an IOException. Here, filePath is the full path name of a file, and fileObj

is a File object that describes the file. If append is true, then output is appended to the

end of the file.

UNIT-III

CMRTC

II B.tech I Semester(IT) 64 Object Oriented Programming

Exception handling

Exception-Handling Fundamentals:

A Java exception is an object that describes an exceptional (that is, error) condition that has

occurred in a piece of code. When an exceptional condition arises, an object representing that

exception is created and thrown in the method that caused the error.That method may choose to

handle the exception itself, or pass it on. Either way, at some point, the exception is caught and

processed.

Exceptions can be generated by the Java run-time system, or they can be

manually generated by your code. Exceptions thrown by Java relate to fundamental errors that

violate the rules of the Java language or the constraints of the Java execution environment.

Manually generated exceptions are typically used to report some error condition to the caller of

a method.

Java exception handling is managed via five keywords: try, catch, throw,

throws, and finally. Briefly, here is how they work. Program statements that you want to monitor

for exceptions are contained within a try block. If an exception occurs within the try block, it is

thrown. Your code can catch this exception (using catch) and handle it in some rational manner.

System-generated exceptions are automatically thrown by the Java run-time system. To manually

throw an exception, use the keyword throw.

Any exception that is thrown out of a method must be specified as such by a

throws clause. Any code that absolutely must be executed before a method returns is put in a

finally block.

general form of an exception-handling block:

try {

// block of code to monitor for errors

}

catch (ExceptionType1 exOb)

{

// exception handler for ExceptionType1

}

catch (ExceptionType2 exOb)

{

// exception handler for ExceptionType2

}

// ...

Finally

{

// block of code to be executed before try block ends

}

Here, ExceptionType is the type of exception that has occurred. The remainder of this

chapter describes how to apply this framework.

Exception Types:

CMRTC

II B.tech I Semester(IT) 65 Object Oriented Programming

All exception types are subclasses of the built-in class Throwable. Thus, Throwable is at the top

of the exception class hierarchy. Immediately below Throwable are two subclasses that partition

exceptions into two distinct branches. One branch is headed by Exception. This class is used for

exceptional conditions that user programs should catch. This is also the class that you will subclass

to create your own custom exception types. There is an important subclass of Exception, called

RuntimeException. Exceptions of this type are automatically defined for the programs that you

write and include things such as division by zero and invalid array indexing. The other branch is

topped by Error, which defines exceptions that are not expected to be caught under normal

circumstances by your program. Exceptions of type Error are used by the Java run-time system to

indicate errors having to do with the run-time environment, itself. Stack overflow is an example

of such an error.

Uncaught Exceptions:

program includes an expression that intentionally causes a divide-by-zero error.

class Exc0

{

public static void main(String args[])

{

int d = 0;

int a = 42 / d;

}

}

When the Java run-time system detects the attempt to divide by zero, it constructs a new exception

object and then throws this exception. This causes the execution of Exc0 to stop, because once an

exception has been thrown, it must be caught by an exception handler and dealt with immediately.

In this example, we haven’t supplied any exception handlers of our own, so the exception is caught

by the default handler provided by the Java run-time system. Any exception that is not caught by

your program will ultimately be processed by the default handler. The default handler displays a

string describing the exception, prints a stack trace from the point at which the exception occurred,

and terminates the program.

Output:

java.lang.ArithmeticException: / by zero

at Exc0.main(Exc0.java:4)

Notice how the class name, Exc0; the method name, main; the filename, Exc0.java; and the

line number, 4, are all included in the simple stack trace. Also, notice that the type of the exception

thrown is a subclass of Exception called ArithmeticException, which more specifically

describes what type of error happened. Java supplies several built-in exception types that match

the various sorts of run-time errors that can be generated.

Using try and catch:

Although the default exception handler provided by the Java run-time system is useful for

debugging, you will usually want to handle an exception ourself. It provides two benefits:

1) it allows you to fix the error.

2) it prevents the program from automatically terminating.

To guard against and handle a run-time error, simply enclose the code that you want to monitor

inside a try block. Immediately following the try block, include a catch clause that specifies the

exception type that you wish to catch. To illustrate how easily this can be done, the following

program includes a try block and a catch clause which processes the ArithmeticException

generated by the division-by-zero error:

class Exc2

CMRTC

II B.tech I Semester(IT) 66 Object Oriented Programming

{

public static void main(String args[])

{

int d, a;

try

{ // monitor a block of code.

d = 0;

a = 42 / d;

System.out.println("This will not be printed.");

}

catch (ArithmeticException e)

{ // catch divide-by-zero error

System.out.println("Division by zero.");

}

System.out.println("After catch statement.");

}

}

output:

Division by zero.

After catch statement.

Notice that the call to println() inside the try block is never executed. Once an exception is

thrown, program control transfers out of the try block into the catch block.Put differently, catch

is not ―called,‖ so execution never ―returns‖ to the try block from a catch. Thus, the line ―This

will not be printed.‖ is not displayed. Once the catch statement has executed, program control

continues with the next line in the program following the entire try/catch mechanism.

A try and its catch statement form a unit. The scope of the catch clause is restricted to those

statements specified by the immediately preceding try statement. The statements that are

protected by try must be surrounded by curly braces. (That is, they must be within a block.) You

cannot use try on a single statement. The goal of most well-constructed catch clauses should be

to resolve the exceptional condition and then continue on as if the error had never happened.

Example:

// Handle an exception and move on.

import java.util.Random;

class HandleError

{

public static void main(String args[])

{

int a=0, b=0, c=0;

Random r = new Random();

for(int i=0; i<32000; i++)

{

try

{

b = r.nextInt();

c = r.nextInt();

a = 12345 / (b/c);

}

catch (ArithmeticException e)

{

System.out.println("Division by zero.");

CMRTC

II B.tech I Semester(IT) 67 Object Oriented Programming

a = 0; // set a to zero and continue

}

System.out.println("a: " + a);

}

}

}

Throwable overrides the toString() method (defined by Object) so that it returns a string

containing a description of the exception. we can display this description in a println() statement

by simply passing the exception as an argument. For example, the catch block in the preceding

program can be rewritten like this:

catch (ArithmeticException e)

{

System.out.println("Exception: " + e);

a = 0; // set a to zero and continue

}

When this version is substituted in the program, and the program is run, each divide-by-zero

error displays the following message:

Exception: java.lang.ArithmeticException: / by zero

Multiple catch Clauses:

In some cases, more than one exception could be raised by a single piece of code. To handle this

type of situation, you can specify two or more catch clauses, each catching a different type of

exception. When an exception is thrown, each catch statement is inspected in order, and the first

one whose type matches that of the exception is executed. After one catch statement executes, the

others are bypassed, and execution continues after the try/catch block.

The following example traps two different exception types:

// Demonstrate multiple catch statements.

class MultiCatch

{

public static void main(String args[])

{

Try

{

int a = args.length;

System.out.println("a = " + a);

int b = 42 / a;

int c[] = { 1 };

c[42] = 99;

}

catch(ArithmeticException e)

{

System.out.println("Divide by 0: " + e);

}

catch(ArrayIndexOutOfBoundsException e)

{

System.out.println("Array index oob: " + e);

}

System.out.println("After try/catch blocks.");

}

}

CMRTC

II B.tech I Semester(IT) 68 Object Oriented Programming

This program will cause a division-by-zero exception if it is started with no commandline

parameters, since a will equal zero. It will survive the division if you provide a command-line

argument, setting a to something larger than zero. But it will cause an

ArrayIndexOutOfBoundsException, since the int array c has a length of 1, yet the program

attempts to assign a value to c[42].

output generated by running it both ways:

C:\>java MultiCatch

a = 0

Divide by 0: java.lang.ArithmeticException: / by zero

After try/catch blocks.

C:\>java MultiCatch TestArg

a = 1

Array index oob: java.lang.ArrayIndexOutOfBoundsException

After try/catch blocks.

When you use multiple catch statements, it is important to remember that exception subclasses

must come before any of their superclasses. This is because a catch statement that uses a

superclass will catch exceptions of that type plus any of its subclasses. Thus, a subclass would

never be reached if it came after its superclass.

Further, in Java, unreachable code is an error. For example, consider the following

program:

/* This program contains an error.

A subclass must come before its superclass in a series of catch statements. If not, unreachable

code will be created and a compile-time error will result.

*/

class SuperSubCatch

{

public static void main(String args[])

{

Try

{

int a = 0;

int b = 42 / a;

}

catch(Exception e)

{

System.out.println("Generic Exception catch.");

}

/* This catch is never reached because

ArithmeticException is a subclass of Exception. */

catch(ArithmeticException e) { // ERROR - unreachable

System.out.println("This is never reached.");

}

}

}

If you try to compile this program, you will receive an error message stating that the second catch

statement is unreachable because the exception has already been caught. Since Arithmetic

Exception is a subclass of Exception, the first catch statement will handle all Exception-based

errors, including Arithmetic Exception. This means that the second catch statement will never

execute. To fix the problem, reverse the order of the catch statements.

CMRTC

II B.tech I Semester(IT) 69 Object Oriented Programming

Nested try Statements:

The try statement can be nested. That is, a try statement can be inside the block of another try.

Each time a try statement is entered, the context of that exception is pushed on the stack. If an

inner try statement does not have a catch handler for a particular exception, the stack is unwound

and the next try statement’s catch handlers are inspected for a match. This continues until one of

the catch statements succeeds, or until all of the nested try statements are exhausted. If no catch

statement matches, then the Java run-time system will handle the exception. Here is an example

that uses nested try statements:

Example of nested try statements:

class NestTry

{

public static void main(String args[])

{

Try

{

int a = args.length;

/* If no command-line args are present,

the following statement will generate

a divide-by-zero exception. */

int b = 42 / a;

System.out.println("a = " + a);

try { // nested try block

/* If one command-line arg is used,

then a divide-by-zero exception

will be generated by the following code. */

if(a==1) a = a/(a-a); // division by zero

/* If two command-line args are used,

then generate an out-of-bounds exception. */

if(a==2) {

int c[] = { 1 };

c[42] = 99; // generate an out-of-bounds exception

}

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Array index out-of-bounds: " + e);

}

} catch(ArithmeticException e) {

System.out.println("Divide by 0: " + e);

}

}

}

this program nests one try block within another. The program works as follows. When you

execute the program with no command-line arguments, a divide-by-zero exception is generated

by the outer try block. Execution of the program by one command-line argument generates a

divide-by-zero exception from within the nested try block. Since the inner block does not catch

this exception, it is passed on to the outer try block, where it is handled. If you execute the

program with two command-line arguments, an array boundary exception is generated from

within the inner try block.

Here are sample runs that illustrate each case:

C:\>java NestTry

Divide by 0: java.lang.ArithmeticException: / by zero

CMRTC

II B.tech I Semester(IT) 70 Object Oriented Programming

C:\>java NestTry One

a = 1

Divide by 0: java.lang.ArithmeticException: / by zero

C:\>java NestTry One Two

a = 2

Array index out-of-bounds:

java.lang.ArrayIndexOutOfBoundsException

Nesting of try statements can occur in less obvious ways when method calls are involved. For

example, you can enclose a call to a method within a try block. Inside that method is another try

statement. In this case, the try within the method is still nested inside the outer try block, which

calls the method.

Here is the previous program recoded so that the nested try block is moved inside the method

nesttry():

/* Try statements can be implicitly nested via

calls to methods. */

class MethNestTry {

static void nesttry(int a) {

try { // nested try block

/* If one command-line arg is used,

then a divide-by-zero exception

will be generated by the following code. */

if(a==1) a = a/(a-a); // division by zero

/* If two command-line args are used,

then generate an out-of-bounds exception. */

if(a==2) {

int c[] = { 1 };

c[42] = 99; // generate an out-of-bounds exception

}

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Array index out-of-bounds: " + e);

}

}

public static void main(String args[]) {

try {

int a = args.length;

/* If no command-line args are present,

the following statement will generate

a divide-by-zero exception. */

int b = 42 / a;

System.out.println("a = " + a);

nesttry(a);

} catch(ArithmeticException e) {

System.out.println("Divide by 0: " + e);

}

}

}

Output:

throw

CMRTC

II B.tech I Semester(IT) 71 Object Oriented Programming

So far, you have only been catching exceptions that are thrown by the Java run-time system.

However, it is possible for your program to throw an exception explicitly, using the throw

statement.

The general form of throw is shown here:

throw ThrowableInstance;

Here, ThrowableInstance must be an object of type Throwable or a subclass of Throwable.

Simple types, such as int or char, as well as non-Throwable classes, such as String and Object,

cannot be used as exceptions. There are two ways you can obtain a Throwable object: using a

parameter into a catch clause, or creating one with the new operator.

The flow of execution stops immediately after the throw statement; any subsequent statements

are not executed. The nearest enclosing try block is inspected to see if it has a catch statement

that matches the type of the exception. If it does find a match, control is transferred to that

statement. If not, then the next enclosing try statement is inspected, and so on. If no matching

catch is found, then the default exception handler halts the program and prints the stack trace.

Here is a sample program that creates and throws an exception. The handler that catches the

exception rethrows it to the outer handler.

// Demonstrate throw.

class ThrowDemo

{

static void demoproc()

{

try

{

throw new NullPointerException("demo");

}

catch(NullPointerException e)

{

System.out.println("Caught inside demoproc.");

throw e; // rethrow the exception

}

}

public static void main(String args[]) {

try {

demoproc();

} catch(NullPointerException e) {

System.out.println("Recaught: " + e);

}

}

}

This program gets two chances to deal with the same error. First, main() sets up an exception

context and then calls demoproc(). The demoproc() method then sets up another exception-

handling context and immediately throws a new instance of NullPointerException, which is

caught on the next line. The exception is then rethrown.

output:

Caught inside demoproc.

Recaught: java.lang.NullPointerException: demo

The program also illustrates how to create one of Java’s standard exception objects.

Pay close attention to this line:

throw new NullPointerException("demo");

CMRTC

II B.tech I Semester(IT) 72 Object Oriented Programming

Here, new is used to construct an instance of NullPointerException. All of Java’s built-in run-

time exceptions have at least two constructors: one with no parameter and one that takes a string

parameter. When the second form is used, the argument specifies a string that describes the

exception. This string is displayed when the object is used as an argument to print() or println(

). It can also be obtained by a call to getMessage(), which is defined by Throwable.

Throws:

If a method is capable of causing an exception that it does not handle, it must specify this behavior

so that callers of the method can guard themselves against that exception. You do this by including

a throws clause in the method’s declaration. A throws clause lists the types of exceptions that a

method might throw. This is necessary for all exceptions, except those of type Error or

RuntimeException, or any of their subclasses.

All other exceptions that a method can throw must be declared in the throws clause. If they are

not, a compile-time error will result.

This is the general form of a method declaration that includes a throws clause:

type method-name(parameter-list) throws exception-list

{

// body of method

}

Here, exception-list is a comma-separated list of the exceptions that a method can throw.

finally:

When exceptions are thrown, execution in a method takes a rather abrupt, nonlinear path that

alters the normal flow through the method. Depending upon how the method is coded, it is even

possible for an exception to cause the method to return prematurely. This could be a problem in

some methods. For example, if a method opens a file upon entry and closes it upon exit, then you

will not want the code that closes the file to be bypassed by the exception-handling mechanism.

The finally keyword is designed to address this contingency.

finally creates a block of code that will be executed after a try/catch block has completed and

before the code following the try/catch block. The finally block will execute whether or not an

exception is thrown. If an exception is thrown, the finally block will execute even if no catch

statement matches the exception. Any time a method is about to return to the caller from inside a

try/catch block, via an uncaught exception or an explicit return statement, the finally clause is

also executed just before the method returns. This can be useful for closing file handles and freeing

up any other resources that might have been allocated at the beginning of a method with the intent

of disposing of them before returning. The finally clause is optional. However, each try statement

requires at least one catch or a finally clause.

Here is an example program that shows three methods that exit in various ways, none without

executing their finally clauses:

// Demonstrate finally.

class FinallyDemo {

// Through an exception out of the method.

static void procA() {

try {

System.out.println("inside procA");

throw new RuntimeException("demo");

} finally {

System.out.println("procA's finally");

}

}

// Return from within a try block.

CMRTC

II B.tech I Semester(IT) 73 Object Oriented Programming

static void procB() {

try {

System.out.println("inside procB");

return;

} finally {

System.out.println("procB's finally");

}

}

// Execute a try block normally.

static void procC() {

try {

System.out.println("inside procC");

} finally {

System.out.println("procC's finally");

}

}

public static void main(String args[]) {

try {

procA();

} catch (Exception e) {

System.out.println("Exception caught");

}

procB();

procC();

}

}

In this example, procA() prematurely breaks out of the try by throwing an exception. The finally

clause is executed on the way out. procB()’s try statement is exited via a return statement. The

finally clause is executed before procB() returns. In procC(), the try statement executes

normally, without error. However, the finally block is still executed.

If a finally block is associated with a try, the finally block will be executed upon conclusion of

the try.

output:

inside procA

procA’s finally

Exception caught

inside procB

procB’s finally

inside procC

procC’s finally

Java’s Built-in Exceptions:

Inside the standard package java.lang, Java defines several exception classes. A few have been

used by the preceding examples. The most general of these exceptions are subclasses of the

standard type RuntimeException. Since java.lang is implicitly imported into all Java programs,

most exceptions derived from RuntimeException are automatically available. Furthermore, they

need not be included in any method’s throws list. In the language of Java, these are called

unchecked exceptions because the compiler does not check to see if a method handles or throws

these exceptions. The unchecked exceptions defined in java.lang are listed in Table. Table lists

those exceptions defined by java.lang that must be included in a method’s throws list if that

method can generate one of these exceptions and does not handle it itself.

CMRTC

II B.tech I Semester(IT) 74 Object Oriented Programming

These are called checked exceptions. Java defines several other types of exceptions that relate to

its various class libraries.

Java’s Unchecked RuntimeException Subclasses:

Exception Meaning

1.ArithmeticException Arithmetic error, such as divide-by-zero.

2.ArrayIndexOutOfBoundsException Array index is out-of-bounds.

3.ArrayStoreException Assignment to an array element of an incompatible type.

4.ClassCastException Invalid cast.

5.IllegalArgumentException Illegal argument used to invoke a method.

6.IllegalMonitorStateException Illegal monitor operation, such as waiting on an unlocked

thread.

7.IllegalStateException Environment or application is in incorrect state.

8.IllegalThreadStateException Requested operation not compatible with current thread state.

9.IndexOutOfBoundsException Some type of index is out-of-bounds.

10.NegativeArraySizeException Array created with a negative size.

Java’s Checked Exceptions Defined in java.lang:

Exception Meaning

1. ClassNotFoundException Class not found.
2. CloneNotSupportedException Attempt to clone an object that does not implement the

Cloneable interface.

3. IllegalAccessException Access to a class is denied.

4. InstantiationException Attempt to create an object of an abstract class or interface.

5.InterruptedException One thread has been interrupted by another thread.

6.NoSuchFieldException A requested field does not exist.

7.NoSuchMethodException A requested method does not exist.

8.NullPointerException Invalid use of a null reference.

9.NumberFormatException Invalid conversion of a string to a numeric format.

10.SecurityException Attempt to violate security.

11.StringIndexOutOfBounds Attempt to index outside the bounds of a string.

12.UnsupportedOperationException An unsupported operation was encountered.

Creating Your Own Exception Subclasses:

Although Java’s built-in exceptions handle most common errors, you will probably want to create

your own exception types to handle situations specific to your applications. This is quite easy to

do: just define a subclass of Exception (which is, of course, a subclass of Throwable). Your

subclasses don’t need to actually implement anything—it is their existence in the type system that

allows you to use them as exceptions.

The Exception class does not define any methods of its own. It does, of course, inherit those

methods provided by Throwable. Thus, all exceptions, including those that you create, have the

methods defined by Throwable available to them.

The following example declares a new subclass of Exception and then uses that subclass to signal

an error condition in a method. It overrides the toString() method, allowing the description of

the exception to be displayed using println().

// This program creates a custom exception type.

class MyException extends Exception

{

private int detail;

MyException(int a)

CMRTC

II B.tech I Semester(IT) 75 Object Oriented Programming

{

detail = a;

}

public String toString()

{

return "MyException[" + detail + "]";

}

}

class ExceptionDemo

{

static void compute(int a) throws MyException

{

System.out.println("Called compute(" + a + ")");

if(a > 10)

throw new MyException(a);

System.out.println("Normal exit");

}

public static void main(String args[])

{

try {

compute(1);

compute(20);

} catch (MyException e)

{

System.out.println("Caught " + e);

}}}

This example defines a subclass of Exception called MyException. This subclass is quite simple:

it has only a constructor plus an overloaded toString() method that displays the value of the

exception. The ExceptionDemo class defines a method named compute() that throws a

MyException object. The exception is thrown when compute()’s integer parameter is greater

than 10. The main() method sets up an exception handler for MyException, then calls compute(

) with a legal value (less than 10) and an illegal one to show both paths through the code.

Output:

Called compute(1)

Normal exit

Called compute(20)

Caught MyException[20]

MULTITHREADING

Java provides built-in support for multithreaded programming. A multithreaded program

contains two or more parts that can run concurrently. Each part of such a program is called a

thread, and each thread defines a separate path of execution. Thus, multithreading is a

specialized form of multitasking.

There are two distinct types of multitasking: process-based and thread-based. It is important to

understand the difference between the two.

CMRTC

II B.tech I Semester(IT) 76 Object Oriented Programming

process-based multitasking is the more familiar form. A process is, in essence, a program

that is executing. Thus, process-based multitasking is the feature that allows your

computer to run two or more programs concurrently. For example, process-based

multitasking enables you to run the Java compiler at the same time that you are using a

text editor. In process-based multitasking, a program is the smallest unit of code that can

be dispatched by the scheduler.

In a thread-based multitasking environment, the thread is the smallest unit of dispatchable

code. This means that a single program can perform two or more tasks simultaneously.

For instance, a text editor can format text at the same time that it is printing, as long as

these two actions are being performed by two separate threads. Thus, process-based

multitasking deals with the ―big picture,‖ and thread-based multitasking handles the

details.

Multitasking threads require less overhead than multitasking processes. Processes are

heavyweight tasks that require their own separate address spaces. Interprocess communication is

expensive and limited. Context switching from one process to another is also costly. Threads, on

the other hand, are lightweight. They share the same address space and cooperatively share the

same heavyweight process. Interthread communication is inexpensive, and context switching

from one thread to the next is low cost. While Java programs make use of process-based

multitasking environments, process-based multitasking is not under the control of Java.

Multithreading enables you to write very efficient programs that make maximum

use of the CPU, because idle time can be kept to a minimum. This is especially important for the

interactive, networked environment in which Java operates, because idle time is common. For

example, the transmission rate of data over a network is much slower than the rate at which the

computer can process it. Even local file system resources are read and written at a much slower

pace than they can be processed by the CPU. And, of course, user input is much slower than the

computer. In a traditional, single-threaded environment, your program has to wait for each of

these tasks to finish before it can proceed to the next one—even though the CPU is sitting idle

most of the time. Multithreading lets you gain access to this idle time and put it to good use.

The Java Thread Model:

The Java run-time system depends on threads for many things, and all the class libraries are

designed with multithreading in mind. In fact, Java uses threads to enable the entire environment

to be asynchronous. This helps reduce inefficiency by preventing the waste of CPU cycles.

The value of a multithreaded environment is best understood in contrast to its counterpart. Single-

threaded systems use an approach called an event loop with polling. In this model, a single thread

of control runs in an infinite loop, polling a single event queue to decide what to do next. Once

this polling mechanism returns with, say, a signal that a network file is ready to be read, then the

event loop dispatches control to the appropriate event handler. Until this event handler returns,

nothing else can happen in the system. This wastes CPU time. It can also result in one part of a

program dominating the system and preventing any other events from being processed. In general,

in a singled-threaded environment, when a thread blocks (that is, suspends execution) because it

is waiting for some resource, the entire program stops running.

The benefit of Java’s multithreading is that the main loop/polling mechanism is

eliminated. One thread can pause without stopping other parts of your program. For example, the

idle time created when a thread reads data from a network or waits for user input can be utilized

elsewhere. Multithreading allows animation loops to sleep for a second between each frame

without causing the whole system to pause. When a thread blocks in a Java program, only the

single thread that is blocked pauses. All other threads continue to run.

Threads exist in several states. A thread can be running. It can be ready to run as

soon as it gets CPU time. A running thread can be suspended, which temporarily suspends its

CMRTC

II B.tech I Semester(IT) 77 Object Oriented Programming

activity. A suspended thread can then be resumed, allowing it to pick up where it left off. A thread

can be blocked when waiting for a resource. At any time, a thread can be terminated, which halts

its execution immediately. Once terminated, a thread cannot be resumed.

Thread Priorities:

Java assigns to each thread a priority that determines how that thread should be treated with

respect to the others. Thread priorities are integers that specify the relative priority of one thread

to another. As an absolute value, a priority is meaningless; a higher-priority thread doesn’t run

any faster than a lower-priority thread if it is the only thread running. Instead, a thread’s priority

is used to decide when to switch from one running thread to the next. This is called a context

switch. The rules that determine when a context switch takes place are simple:

■ A thread can voluntarily relinquish control. This is done by explicitly yielding, sleeping, or

blocking on pending I/O. In this scenario, all other threads are examined, and the highest- priority

thread that is ready to run is given the CPU.

■ A thread can be pre-empted by a higher-priority thread. In this case, a lower-priority thread

that does not yield the processor is simply preempted—no matter what it is doing—by a higher-

priority thread. Basically, as soon as a higher-priority thread wants to run, it does. This is called

preemptive multitasking.

In cases where two threads with the same priority are competing for CPU cycles, the situation is

a bit complicated. For operating systems such as Windows 98, threads of equal priority are time-

sliced automatically in round-robin fashion. For other types of operating systems, threads of equal

priority must voluntarily yield control to their peers. If they don’t, the other threads will not run.

Problems can arise from the differences in the way that operating systems context-switch

threads of equal priority.

Synchronization:

Because multithreading introduces an asynchronous behavior to the programs, there must be a

way for you to enforce synchronicity when you need it. For example, if we want two threads to

communicate and share a complicated data structure, such as a linked list, you need some way to

ensure that they don’t conflict with each other. That is, we must prevent one thread from writing

data while another thread is in the middle of reading it. For this purpose, Java implements an

elegant twist on an age-old model of interprocess synchronization: the monitor. The monitor is a

CMRTC

II B.tech I Semester(IT) 78 Object Oriented Programming

control mechanism first defined by C.A.R. Hoare. You can think of a monitor as a very small box

that can hold only one thread. Once a thread enters a monitor, all other threads must wait until

that thread exits the monitor. In this way, a monitor can be used to protect a shared asset from

being manipulated by more than one thread at a time.

Messaging:

we divide the program into separate threads, you need to define how they will communicate with

each other. When programming with most other languages, you must depend on the operating

system to establish communication between threads. This, of course, adds overhead. By contrast,

Java provides a clean, low-cost way for two or more threads to talk to each other, via calls to

predefined methods that all objects have. Java’s messaging system allows a thread to enter a

synchronized method on an object, and then wait there until some other thread explicitly notifies

it to come out.

The Thread Class and the Runnable Interface:

Java’s multithreading system is built upon the Thread class, its methods, and its companion

interface, Runnable. Thread encapsulates a thread of execution. Since we can’t directly refer to

the ethereal state of a running thread, you will deal with it through its proxy, the Thread instance

that spawned it. To create a new thread, your program will either extend Thread or implement

the Runnable interface.

The Thread class defines several methods that help manage threads.

Method Meaning

1.getName Obtain a thread’s name.

2.getPriority Obtain a thread’s priority.

3.isAlive Determine if a thread is still running.

4.join Wait for a thread to terminate.

5. run Entry point for the thread.

6. sleep Suspend a thread for a period of time.

7.start Start a thread by calling its run method.

The Main Thread:

When a Java program starts up, one thread begins running immediately. This is usually called

the main thread of your program, because it is the one that is executed when your program begins.

The main thread is important for two reasons:

■ It is the thread from which other ―child‖ threads will be spawned.

■ Often it must be the last thread to finish execution because it performs various shutdown

actions.

Although the main thread is created automatically when your program is started, it can be

controlled through a Thread object. To do so, you must obtain a reference to it by calling the

method currentThread(), which is a public static member of Thread.

Its general form is shown here:

static Thread currentThread()

This method returns a reference to the thread in which it is called. Once you have a reference to

the main thread, you can control it just like any other thread.

example:

// Controlling the main Thread.

class CurrentThreadDemo

{

public static void main(String args[])

{

CMRTC

II B.tech I Semester(IT) 79 Object Oriented Programming

Thread t = Thread.currentThread();

System.out.println("Current thread: " + t);

// change the name of the thread

t.setName("My Thread");

System.out.println("After name change: " + t);

Try

{

for(int n = 5; n > 0; n--)

{

System.out.println(n);

Thread.sleep(1000);

}

}

catch (InterruptedException e)

{

System.out.println("Main thread interrupted");

}

}

}

In this program, a reference to the current thread (the main thread, in this case) is obtained by

calling currentThread(), and this reference is stored in the local variable t. Next, the program

displays information about the thread. The program then calls setName() to change the internal

name of the thread. Information about the thread is then redisplayed. Next, a loop counts down

from five, pausing one second between each line. The pause is accomplished by the sleep()

method. The argument to sleep() specifies the delay period in milliseconds. Notice the try/catch

block around this loop.

The sleep() method in Thread might throw an InterruptedException. This would happen if

some other thread wanted to interrupt this sleeping one. This example just prints a message if it

gets interrupted. In a real program, you would need to handle this differently.

output:

Current thread: Thread[main,5,main]

After name change: Thread[My Thread,5,main]

5

4

3

2

1

Notice the output produced when t is used as an argument to println(). This displays, in order:

the name of the thread, its priority, and the name of its group. By default, the name of the main

thread is main. Its priority is 5, which is the default value, and main is also the name of the group

of threads to which this thread belongs. A thread group is a data structure that controls the state

of a collection of threads as a whole. This process is managed by the particular run- time

environment and is not discussed in detail here.

After the name of the thread is changed, t is again output. This time, the new name of

the thread is displayed.

The sleep() method causes the thread from which it is called to suspend execution for the

specified period of milliseconds.

Its general form is shown here:

static void sleep(long milliseconds) throws InterruptedException

The number of milliseconds to suspend is specified in milliseconds. This method may throw an

InterruptedException.

CMRTC

II B.tech I Semester(IT) 80 Object Oriented Programming

The sleep() method has a second form, shown next, which allows you to specify the period in

terms of milliseconds and nanoseconds:

static void sleep(long milliseconds, int nanoseconds) throws InterruptedException

This second form is useful only in environments that allow timing periods as short as

nanoseconds.

As the preceding program shows, you can set the name of a thread by using setName(). You

can obtain the name of a thread by calling getName() (but note that this procedure is not shown

in the program). These methods are members of the Thread class and are declared like this:

final void setName(String threadName)

final String getName()

Here, threadName specifies the name of the thread.

Creating a Thread:

We create a thread by instantiating an object of type Thread. Java defines two ways in which

this can be accomplished:

■ You can implement the Runnable interface.

■ You can extend the Thread class, itself.

Implementing Runnable

The easiest way to create a thread is to create a class that implements the Runnable interface.

Runnable abstracts a unit of executable code. You can construct a thread on any object that

implements Runnable. To implement Runnable, a class need only implement a single method

called run(), which is declared like this:

public void run()

Inside run(), you will define the code that constitutes the new thread. It is important to understand

that run() can call other methods, use other classes, and declare variables, just like the main

thread can. The only difference is that run() establishes the entry point for another, concurrent

thread of execution within your program. This thread will end when run() returns.

After we create a class that implements Runnable, you will instantiate an object of type

Thread from within that class. Thread defines several constructors. The one that we will use is

shown here:

Thread(Runnable threadOb, String threadName)

In this constructor, threadOb is an instance of a class that implements the Runnable interface.

This defines where execution of the thread will begin. The name of the new thread is specified by

threadName.

After the new thread is created, it will not start running until you call its start() method, which is

declared within Thread. In essence, start() executes a call to run().

The start() method is shown here:

void start()

Here is an example that creates a new thread and starts it running:

// Create a second thread.

class NewThread implements Runnable {

Thread t;

NewThread() {

// Create a new, second thread

t = new Thread(this, "Demo Thread");

System.out.println("Child thread: " + t);

t.start(); // Start the thread

}

// This is the entry point for the second thread.

public void run() {

try {

CMRTC

II B.tech I Semester(IT) 81 Object Oriented Programming

for(int i = 5; i > 0; i--) {

System.out.println("Child Thread: " + i);

Thread.sleep(500);

}

} catch (InterruptedException e) {

System.out.println("Child interrupted.");

}

System.out.println("Exiting child thread.");

}

}

class ThreadDemo {

public static void main(String args[]) {

new NewThread(); // create a new thread

try {

for(int i = 5; i > 0; i--) {

System.out.println("Main Thread: " + i);

Thread.sleep(1000);

}

} catch (InterruptedException e) {

System.out.println("Main thread interrupted.");

}

System.out.println("Main thread exiting.");

}

}

Inside NewThread’s constructor, a new Thread object is created by the following

statement:

t = new Thread(this, "Demo Thread");

Passing this as the first argument indicates that you want the new thread to call the run() method

on this object. Next, start() is called, which starts the thread of execution beginning at the run(

) method. This causes the child thread’s for loop to begin. After calling start(), NewThread’s

constructor returns to main(). When the main thread resumes, it enters its for loop. Both threads

continue running, sharing the CPU, until their loops finish. The output produced by this program

is as follows:

Child thread: Thread[Demo Thread,5,main]

Main Thread: 5

Child Thread: 5

Child Thread: 4

Main Thread: 4

Child Thread: 3

Child Thread: 2

Main Thread: 3

Child Thread: 1

Exiting child thread.

Main Thread: 2

Main Thread: 1

Main thread exiting.

As mentioned earlier, in a multithreaded program, often the main thread must be the last thread

to finish running. In fact, for some older JVMs, if the main thread finishes before a child thread

has completed, then the Java run-time system may ―hang.‖ The preceding program ensures that

the main thread finishes last, because the main thread sleeps for 1,000 milliseconds between

iterations, but the child thread sleeps for only 500 milliseconds. This causes the child thread to

CMRTC

II B.tech I Semester(IT) 82 Object Oriented Programming

terminate earlier than the main thread. Shortly, you will see a better way to wait for a thread to

finish.

Extending Thread:

The second way to create a thread is to create a new class that extends Thread, and then to create

an instance of that class. The extending class must override the run() method, which is the entry

point for the new thread. It must also call start() to begin execution of the new thread. Here is the

preceding program rewritten to extend Thread:

// Create a second thread by extending Thread

class NewThread extends Thread {

NewThread() {

// Create a new, second thread

super("Demo Thread");

System.out.println("Child thread: " + this);

start(); // Start the thread

}

// This is the entry point for the second thread.

public void run() {

try {

for(int i = 5; i > 0; i--) {

System.out.println("Child Thread: " + i);

Thread.sleep(500);

}

} catch (InterruptedException e) {

System.out.println("Child interrupted.");

}

System.out.println("Exiting child thread.");

}

}

class ExtendThread {

public static void main(String args[]) {

new NewThread(); // create a new thread

try {

for(int i = 5; i > 0; i--) {

System.out.println("Main Thread: " + i);

Thread.sleep(1000);

}

} catch (InterruptedException e) {

System.out.println("Main thread interrupted.");

}

System.out.println("Main thread exiting.");

}

}

This program generates the same output as the preceding version. As you can see, the child

thread is created by instantiating an object of NewThread, which is derived from Thread.

Notice the call to super() inside NewThread. This invokes the following form of the Thread

constructor:

public Thread(String threadName)

Here, threadName specifies the name of the thread.

CMRTC

II B.tech I Semester(IT) 83 Object Oriented Programming

Creating Multiple Threads:

Wwe have been using only two threads: the main thread and one child thread. However, your

program can spawn as many threads as it needs. For example, the following program creates three

child threads:

// Create multiple threads.

class NewThread implements Runnable {

String name; // name of thread

Thread t;

NewThread(String threadname) {

name = threadname;

t = new Thread(this, name);

System.out.println("New thread: " + t);

t.start(); // Start the thread

}

// This is the entry point for thread.

public void run() {

try {

for(int i = 5; i > 0; i--) {

System.out.println(name + ": " + i);

Thread.sleep(1000);

}

} catch (InterruptedException e) {

System.out.println(name + "Interrupted");

}

System.out.println(name + " exiting.");

}

}

class MultiThreadDemo {

public static void main(String args[]) {

new NewThread("One"); // start threads

new NewThread("Two");

new NewThread("Three");

try {

// wait for other threads to end

Thread.sleep(10000);

} catch (InterruptedException e) {

System.out.println("Main thread Interrupted");

}

System.out.println("Main thread exiting.");

}

}

The output from this program is shown here:

New thread: Thread[One,5,main]

New thread: Thread[Two,5,main]

New thread: Thread[Three,5,main]

One: 5

Two: 5

Three: 5

One: 4

Two: 4

CMRTC

II B.tech I Semester(IT) 84 Object Oriented Programming

Three: 4

One: 3

Three: 3

Two: 3

One: 2

Three: 2

Two: 2

One: 1

Three: 1

Two: 1

One exiting.

Two exiting.

Three exiting.

Main thread exiting.

once started, all three child threads share the CPU. Notice the call to sleep(10000) in main().

This causes the main thread to sleep for ten seconds and ensures that it will finish last.

Using isAlive() and join():

As mentioned, often you will want the main thread to finish last. In the preceding examples, this

is accomplished by calling sleep() within main(), with a long enough delay to ensure that all

child threads terminate prior to the main thread. However, this is hardly a satisfactory solution,

and it also raises a larger question: How can one thread know when another thread has ended?

Fortunately, Thread provides a means by which you can answer this question.

Two ways exist to determine whether a thread has finished. First, you can call isAlive() on the

thread. This method is defined by Thread, and its general form is shown here:

final boolean isAlive()

The isAlive() method returns true if the thread upon which it is called is still running. It returns

false otherwise.

While isAlive() is occasionally useful, the method that you will more commonly use to wait for

a thread to finish is called join(), shown here:

final void join() throws InterruptedException

This method waits until the thread on which it is called terminates. Its name comes from the

concept of the calling thread waiting until the specified thread joins it.

Additional forms of join() allow you to specify a maximum amount of time that you want to

wait for the specified thread to terminate.

Thread Priorities:

Thread priorities are used by the thread scheduler to decide when each thread should be allowed

to run. In theory, higher-priority threads get more CPU time than lowerpriority threads. In

practice, the amount of CPU time that a thread gets often depends on several factors besides its

priority. (For example, how an operating system implements multitasking can affect the relative

availability of CPU time.) A higher-priority thread can also preempt a lower-priority one. For

instance, when a lower-priority thread is running and a higher-priority thread resumes (from

sleeping or waiting on I/O, for example), it will preempt the lower-priority thread.

threads of equal priority should get equal access to the CPU. threads that share the same priority

should yield control once in a while. This ensures that all threads have a chance to run under a

nonpreemptive operating system. In practice, even in nonpreemptive environments, most threads

still get a chance to run, because most threads inevitably encounter some blocking situation, such

as waiting for I/O. When this happens, the blocked thread is suspended and other threads can run.

But, if you want smooth multithreaded execution, you are better off not relying

CMRTC

II B.tech I Semester(IT) 85 Object Oriented Programming

on this. Also, some types of tasks are CPU-intensive. Such threads dominate the CPU. For these

types of threads, you want to yield control occasionally, so that other threads can run.

 To set a thread’s priority, use the setPriority() method, which is a member of Thread.

This is its general form:

final void setPriority(int level)

Here, level specifies the new priority setting for the calling thread. The value of level must be

within the range MIN_PRIORITY and MAX_PRIORITY. Currently, these values are 1 and 10,

respectively. To return a thread to default priority, specify NORM_PRIORITY, which is

currently 5. These priorities are defined as final variables within Thread.

 You can obtain the current priority setting by calling the getPriority() method of

Thread, shown here:
final int getPriority()

Synchronization:

When two or more threads need access to a shared resource, they need some way to ensure that

the resource will be used by only one thread at a time. The process by which this is achieved is

called synchronization. As you will see, Java provides unique, language-level support for it.

Key to synchronization is the concept of the monitor (also called a semaphore). A monitor is an

object that is used as a mutually exclusive lock, or mutex. Only one thread can own a monitor at

a given time. When a thread acquires a lock, it is said to have entered the monitor. All other

threads attempting to enter the locked monitor will be suspended until the first thread exits the

monitor. These other threads are said to be waiting for the monitor. A thread that owns a

monitor can reenter the same monitor if it so desires.

You can synchronize your code in either of two ways. Both involve the use of the synchronized

keyword, and both are examined here.

Using Synchronized Methods:

Synchronization is easy in Java, because all objects have their own implicit monitor associated

with them. To enter an object’s monitor, just call a method that has been modified with the

synchronized keyword. While a thread is inside a synchronized method, all other threads that

try to call it (or any other synchronized method) on the same instance have to wait. To exit the

monitor and relinquish control of the object to the next waiting thread, the owner of the monitor

simply returns from the synchronized method.

To understand the need for synchronization, let’s begin with a simple example that does not use

it—but should. The following program has three simple classes. The first one, Callme, has a

single method named call(). The call() method takes a String parameter called msg. This method

tries to print the msg string inside of square brackets. The interesting thing to notice is that after

call() prints the opening bracket and the msg string, it calls Thread.sleep(1000), which pauses

the current thread for one second.

The constructor of the next class, Caller, takes a reference to an instance of the Callme class and

a String, which are stored in target and msg, respectively. The constructor also creates a new

thread that will call this object’s run() method. The thread is started immediately. The run(

) method of Caller calls the call() method on the target instance of Callme, passing in the msg

string. Finally, the Synch class starts by creating a single instance of Callme, and three instances

of Caller, each with a unique message string. The same instance of Callme is passed to each

Caller.

Example:

// This program is not synchronized.

class Callme {
void call(String msg) {

CMRTC

II B.tech I Semester(IT) 86 Object Oriented Programming

System.out.print("[" + msg);

try {

Thread.sleep(1000);

} catch(InterruptedException e) {

System.out.println("Interrupted");

}

System.out.println("]");

}

}

class Caller implements Runnable {

String msg;

Callme target;

Thread t;

public Caller(Callme targ, String s) {

target = targ;

msg = s;

t = new Thread(this);

t.start();

}

public void run() {

target.call(msg);

}

}

class Synch {

public static void main(String args[]) {

Callme target = new Callme();

Caller ob1 = new Caller(target, "Hello");

Caller ob2 = new Caller(target, "Synchronized");

Caller ob3 = new Caller(target, "World");

// wait for threads to end

try {

ob1.t.join();

ob2.t.join();

ob3.t.join();

} catch(InterruptedException e) {

System.out.println("Interrupted");

}

}

}

Here is the output produced by this program:

Hello[Synchronized[World]

]

]

As you can see, by calling sleep(), the call() method allows execution to switch to another thread.

This results in the mixed-up output of the three message strings. In this program, nothing exists to

stop all three threads from calling the same method, on the same object, at the same time. This is

known as a race condition, because the three threads are racing each other to complete the method.

This example used sleep() to make the effects repeatable and obvious. In most situations, a race

condition is more subtle and less predictable, because you can’t be sure when the context switch

will occur. This can cause a program to run right one time and wrong the next.

CMRTC

II B.tech I Semester(IT) 87 Object Oriented Programming

To fix the preceding program, you must serialize access to call(). That is, you must restrict its

access to only one thread at a time. To do this, you simply need to precede call()’s definition with

the keyword synchronized, as shown here:

class Callme {

synchronized void call(String msg) {

...

This prevents other threads from entering call() while another thread is using it. After

synchronized has been added to call(), the output of the program is as follows:

[Hello]

[Synchronized]

[World]

Any time that you have a method, or group of methods, that manipulates the internal state of an

object in a multithreaded situation, you should use the synchronized keyword to guard the state

from race conditions. Remember, once a thread enters any synchronized method on an instance,

no other thread can enter any other synchronized method on the same instance. However,

nonsynchronized methods on that instance will continue to be callable.

The synchronized Statement

While creating synchronized methods within classes that you create is an easy and effective

means of achieving synchronization, it will not work in all cases. To understand why, consider

the following. Imagine that you want to synchronize access to objects of a class that was not

designed for multithreaded access. That is, the class does not use synchronized methods. Further,

this class was not created by you, but by a third party, and you do not have access to the source

code. Thus, you can’t add synchronized to the appropriate methods within the class. How can

access to an object of this class be synchronized? Fortunately, the solution to this problem is quite

easy: You simply put calls to the methods defined by this class inside a synchronized block.

This is the general form of the synchronized statement:

synchronized(object) {

// statements to be synchronized

}

Here, object is a reference to the object being synchronized. A synchronized block ensures that a

call to a method that is a member of object occurs only after the current thread has successfully

entered object’s monitor.

Here is an alternative version of the preceding example, using a synchronized block

within the run() method:

// This program uses a synchronized block.

class Callme {

void call(String msg) {

System.out.print("[" + msg);

try {

Thread.sleep(1000);

} catch (InterruptedException e) {

System.out.println("Interrupted");

}

System.out.println("]");

}

}

class Caller implements Runnable {

String msg;

Callme target;

Thread t;

CMRTC

II B.tech I Semester(IT) 88 Object Oriented Programming

public Caller(Callme targ, String s) {

target = targ;

msg = s;

t = new Thread(this);

t.start();

}

// synchronize calls to call()

public void run() {

synchronized(target) { // synchronized block

target.call(msg);

}

}

}

class Synch1 {

public static void main(String args[]) {

Callme target = new Callme();

Caller ob1 = new Caller(target, "Hello");

Caller ob2 = new Caller(target, "Synchronized");

Caller ob3 = new Caller(target, "World");

// wait for threads to end

try {

ob1.t.join();

ob2.t.join();

ob3.t.join();

} catch(InterruptedException e) {

System.out.println("Interrupted");

}

}

}

Here, the call() method is not modified by synchronized. Instead, the synchronized statement

is used inside Caller’s run() method. This causes the same correct output as the preceding

example, because each thread waits for the prior one to finish before proceeding.

Interthread Communication:

The preceding examples unconditionally blocked other threads from asynchronous access to

certain methods. This use of the implicit monitors in Java objects is powerful, but you can achieve

a more subtle level of control through interprocess communication. multithreading replaces event

loop programming by dividing your tasks into discrete and logical units. Threads also provide a

secondary benefit: they do away with polling. Polling is usually implemented by a loop that is

used to check some condition repeatedly. Once the condition is true, appropriate action is taken.

This wastes CPU time.

For example, consider the classic queuing problem, where one thread is producing some data and

another is consuming it. To make the problem more interesting, suppose that the producer has to

wait until the consumer is finished before it generates more data. In a polling system, the consumer

would waste many CPU cycles while it waited for the producer to produce. Once the producer

was finished, it would start polling, wasting more CPU cycles waiting for the consumer to finish,

and so on. Clearly, this situation is undesirable.

To avoid polling, Java includes an elegant interprocess communication mechanism via the wait(

), notify(), and notifyAll() methods. These methods are implemented as final methods in

Object, so all classes have them. All three methods can be called only from within a

CMRTC

II B.tech I Semester(IT) 89 Object Oriented Programming

synchronized context. Although conceptually advanced from a computer science perspective,

the rules for using these methods are actually quite simple:

■ wait() tells the calling thread to give up the monitor and go to sleep until some

other thread enters the same monitor and calls notify().

■ notify() wakes up the first thread that called wait() on the same object.

■ notifyAll() wakes up all the threads that called wait() on the same object.

The highest priority thread will run first.

These methods are declared within Object, as shown here:

final void wait() throws InterruptedException

final void notify()

final void notifyAll()

Additional forms of wait() exist that allow you to specify a period of time to wait.

The following sample program incorrectly implements a simple form of the producer/consumer

problem. It consists of four classes: Q, the queue that you’re trying to synchronize; Producer, the

threaded object that is producing queue entries; Consumer, the threaded object that is consuming

queue entries; and PC, the tiny class that creates the single Q, Producer, and Consumer.

// An incorrect implementation of a producer and consumer.

class Q {

int n;

synchronized int get() {

System.out.println("Got: " + n);

return n;

}

synchronized void put(int n) {

this.n = n;

System.out.println("Put: " + n);

}

}

class Producer implements Runnable {

Q q;

Producer(Q q) {

this.q = q;

new Thread(this, "Producer").start();

}

public void run() {

int i = 0;

while(true) {

q.put(i++);

}

}

}

class Consumer implements Runnable {

Q q;

Consumer(Q q) {

this.q = q;

new Thread(this, "Consumer").start();

}

public void run() {

while(true) {

q.get();

CMRTC

II B.tech I Semester(IT) 90 Object Oriented Programming

}

}

}

class PC {

public static void main(String args[]) {

Q q = new Q();

new Producer(q);

new Consumer(q);

System.out.println("Press Control-C to stop.");

}

}

Although the put() and get() methods on Q are synchronized, nothing stops the producer from

overrunning the consumer, nor will anything stop the consumer from consuming the same queue

value twice. Thus, you get the erroneous output shown here (the exact output will vary with

processor speed and task load):

Put: 1

Got: 1

Got: 1

Got: 1

Got: 1

Got: 1

Put: 2

Put: 3

Put: 4

Put: 5

Put: 6

Put: 7

Got: 7

As you can see, after the producer put 1, the consumer started and got the same 1 five times in a

row. Then, the producer resumed and produced 2 through 7 without letting the consumer have a

chance to consume them. The proper way to write this program in Java is to use wait() and notify(

) to signal in both directions, as shown here:

// A correct implementation of a producer and consumer.

class Q {

int n;

boolean valueSet = false;

synchronized int get() {

if(!valueSet)

try {

wait();

} catch(InterruptedException e) {

System.out.println("InterruptedException caught");

}

System.out.println("Got: " + n);

valueSet = false;

notify();

return n;

}

synchronized void put(int n) {

if(valueSet)

try {

CMRTC

II B.tech I Semester(IT) 91 Object Oriented Programming

wait();

} catch(InterruptedException e) {

System.out.println("InterruptedException caught");

}

this.n = n;

valueSet = true;

System.out.println("Put: " + n);

notify();

}

}

class Producer implements Runnable {

Q q;

Producer(Q q) {

this.q = q;

new Thread(this, "Producer").start();

}

public void run() {

int i = 0;

while(true) {

q.put(i++);

}

}

}

class Consumer implements Runnable {

Q q;

Consumer(Q q) {

this.q = q;

new Thread(this, "Consumer").start();

}

public void run() {

while(true) {

q.get();

}

}

}

class PCFixed {

public static void main(String args[]) {

Q q = new Q();

new Producer(q);

new Consumer(q);

System.out.println("Press Control-C to stop.");

}

}

Inside get(), wait() is called. This causes its execution to suspend until the Producer notifies

you that some data is ready. When this happens, execution inside get() resumes. After the data

has been obtained, get() calls notify(). This tells Producer that it is okay to put more data in

the queue. Inside put(), wait() suspends execution until the Consumer has removed the item

from the queue. When execution resumes, the next item of data is put in the queue, and notify()

is called. This tells the Consumer that it should now remove it.

Output:

Put: 1

CMRTC

II B.tech I Semester(IT) 92 Object Oriented Programming

Got: 1

Put: 2

Got: 2

Put: 3

Got: 3

Put: 4

Got: 4

Put: 5

Got: 5

EXPLORING JAVA.UTIL PACKAGE:

The java.util package contains one of Java’s most powerful subsystems: collections.

1. StringTokenizer

The processing of text often consists of parsing a formatted input string. Parsing is the division

of text into a set of discrete parts, or tokens, which in a certain sequence can convey a semantic

meaning. The StringTokenizer class provides the first step in this parsing process, often called

the lexer (lexical analyzer) or scanner. StringTokenizer implements the Enumeration interface.

Therefore, given an input string, you can enumerate the individual tokens contained in it using

StringTokenizer.

To use StringTokenizer, you specify an input string and a string that contains delimiters.

Delimiters are characters that separate tokens. Each character in the delimiters string is considered

a valid delimiter—for example, “,;:” sets the delimiters to a comma, semicolon, and colon.

The default set of delimiters consists of the whitespace characters: space, tab, newline, and

carriage return.

The StringTokenizer constructors are shown here:

StringTokenizer(String str)

StringTokenizer(String str, String delimiters)

StringTokenizer(String str, String delimiters, boolean delimAsToken)

In all versions, str is the string that will be tokenized. In the first version, the default delimiters

are used. In the second and third versions, delimiters is a string that specifies

the delimiters. In the third version, if delimAsToken is true, then the delimiters are also

returned as tokens when the string is parsed. Otherwise, the delimiters are not returned.

Delimiters are not returned as tokens by the first two forms.

Once you have created a StringTokenizer object, the nextToken() method is used to extract

consecutive tokens. The hasMoreTokens() method returns true while there are more tokens to

be extracted. Since StringTokenizer implements Enumeration, the

hasMoreElements() and nextElement() methods are also implemented, and they act

the same as hasMoreTokens() and nextToken(), respectively.

CMRTC

II B.tech I Semester(IT) 93 Object Oriented Programming

2. Date

The Date class encapsulates the current date and time.
Date supports the following constructors:

Date()

Date(long millisec)

The first constructor initializes the object with the current date and time. The second constructor

accepts one argument that equals the number of milliseconds that have elapsed since midnight,

January 1, 1970.

3. Random

The Random class is a generator of pseudorandom numbers. These are called pseudorandom

numbers because they are simply uniformly distributed sequences. Random defines the following

constructors:

Random()

Random(long seed)

The first version creates a number generator that uses the current time as the starting,

or seed, value. The second form allows you to specify a seed value manually. If you initialize a

Random object with a seed, you define the starting point for the random sequence. If you use the

same seed to initialize another Random object, you wil l extract the same random sequence. If

you want to generate different sequences, specify different seed values. The easiest way to do this

is to use the current time to seed a Random object. This approach reduces the possibility of getting

repeated sequences.

Some of the methods in this class are:

i. boolean nextBoolean(): Returns the next boolean random number.

ii. void nextBytes(byte vals[]): Fills vals with randomly generated values.

iii. double nextDouble(): Returns the next double random number.

iv. float nextFloat(): Returns the next float random number.

v. double nextGaussian(): Returns the next Gaussian random number.

vi. int nextInt(): Returns the next int random number.

vii. int nextInt(int n): Returns next int random number within the range zero to n.

viii. long nextLong(): Returns the next long random number.

CMRTC

II B.tech I Semester(IT) 94 Object Oriented Programming

UNIT-IV

COLLECTIONS IN JAVA

Java provided ad hoc classes such as Dictionary, Vector, Stack, and Properties to store and

manipulate groups of objects. Although these classes were quite useful, they lacked a central,

unifying theme. Thus, the way that you used Vector was different from the way that you used

Properties.

The collections framework was designed to meet several goals, such as −

 The framework had to be high-performance. The implementations for the fundamental

collections (dynamic arrays, linked lists, trees, and hashtables) were to be highly

efficient.

 The framework had to allow different types of collections to work in a similar manner

and with a high degree of interoperability.

 The framework had to extend and/or adapt a collection easily.

Towards this end, the entire collections framework is designed around a set of standard

interfaces. Several standard implementations such as LinkedList, HashSet, and TreeSet, of

these interfaces are provided that you may use as-is and you may also implement your own

collection, if you choose.

A collections framework is a unified architecture for representing and manipulating collections.

All collections frameworks contain the following −

 Interfaces − These are abstract data types that represent collections. Interfaces allow

collections to be manipulated independently of the details of their representation. In

object-oriented languages, interfaces generally form a hierarchy.

 Implementations, i.e., Classes − These are the concrete implementations of the

collection interfaces. In essence, they are reusable data structures.

 Algorithms − These are the methods that perform useful computations, such as

searching and sorting, on objects that implement collection interfaces. The algorithms

are said to be polymorphic: that is, the same method can be used on many different

implementations of the appropriate collection interface.

In addition to collections, the framework defines several map interfaces and classes. Maps store

key/value pairs. Although maps are not collections in the proper use of the term, but they are

fully integrated with collections.

THE COLLECTION INTERFACES

The collections framework defines several interfaces. This section provides an overview of each

interface −

Sr.No. Interface & Description

1 The Collection Interface

https://www.tutorialspoint.com/java/java_collection_interface.htm

CMRTC

II B.tech I Semester(IT) 95 Object Oriented Programming

This enables you to work with groups of objects; it is at the top of the collections

hierarchy.

The List Interface
2

This extends Collection and an instance of List stores an ordered collection of elements.

The Set
3

This extends Collection to handle sets, which must contain unique elements.

The SortedSet
4

This extends Set to handle sorted sets.

The Map
5

This maps unique keys to values.

The Map.Entry
6

This describes an element (a key/value pair) in a map. This is an inner class of Map.

The SortedMap
7

This extends Map so that the keys are maintained in an ascending order.

The Enumeration

8 This is legacy interface defines the methods by which you can enumerate (obtain one at a

time) the elements in a collection of objects. This legacy interface has been superceded

by Iterator.

THE COLLECTION CLASSES

Java provides a set of standard collection classes that implement Collection interfaces. Some of

the classes provide full implementations that can be used as-is and others are abstract class,

providing skeletal implementations that are used as starting points for creating concrete

collections.

The standard collection classes are summarized in the following table −

Sr.No. Class & Description

1
AbstractCollection

Implements most of the Collection interface.

2
AbstractList

Extends AbstractCollection and implements most of the List interface.

AbstractSequentialList

3
Extends AbstractList for use by a collection that uses sequential rather than random
access of its elements.

https://www.tutorialspoint.com/java/java_list_interface.htm
https://www.tutorialspoint.com/java/java_set_interface.htm
https://www.tutorialspoint.com/java/java_sortedset_interface.htm
https://www.tutorialspoint.com/java/java_map_interface.htm
https://www.tutorialspoint.com/java/java_mapentry_interface.htm
https://www.tutorialspoint.com/java/java_sortedmap_interface.htm
https://www.tutorialspoint.com/java/java_enumeration_interface.htm

CMRTC

II B.tech I Semester(IT) 96 Object Oriented Programming

LinkedList
4

Implements a linked list by extending AbstractSequentialList.

ArrayList
5

Implements a dynamic array by extending AbstractList.

6
AbstractSet

Extends AbstractCollection and implements most of the Set interface.

HashSet
7

Extends AbstractSet for use with a hash table.

LinkedHashSet
8

Extends HashSet to allow insertion-order iterations.

TreeSet
9

Implements a set stored in a tree. Extends AbstractSet.

10
AbstractMap

Implements most of the Map interface.

HashMap
11

Extends AbstractMap to use a hash table.

TreeMap
12

Extends AbstractMap to use a tree.

WeakHashMap
13

Extends AbstractMap to use a hash table with weak keys.

LinkedHashMap
14

Extends HashMap to allow insertion-order iterations.

IdentityHashMap
15

Extends AbstractMap and uses reference equality when comparing documents.

The AbstractCollection, AbstractSet, AbstractList, AbstractSequentialList and AbstractMap

classes provide skeletal implementations of the core collection interfaces, to minimize the effort

required to implement them.

The following legacy classes defined by java.util have been discussed in the previous chapter −

Sr.No. Class & Description

1
Vector

This implements a dynamic array. It is similar to ArrayList, but with some differences.

https://www.tutorialspoint.com/java/java_linkedlist_class.htm
https://www.tutorialspoint.com/java/java_arraylist_class.htm
https://www.tutorialspoint.com/java/java_hashset_class.htm
https://www.tutorialspoint.com/java/java_linkedhashset_class.htm
https://www.tutorialspoint.com/java/java_treeset_class.htm
https://www.tutorialspoint.com/java/java_hashmap_class.htm
https://www.tutorialspoint.com/java/java_treemap_class.htm
https://www.tutorialspoint.com/java/java_weakhashmap_class.htm
https://www.tutorialspoint.com/java/java_linkedhashmap_class.htm
https://www.tutorialspoint.com/java/java_identityhashmap_class.htm
https://www.tutorialspoint.com/java/java_vector_class.htm

CMRTC

II B.tech I Semester(IT) 97 Object Oriented Programming

Stack
2

Stack is a subclass of Vector that implements a standard last-in, first-out stack.

Dictionary

3
Dictionary is an abstract class that represents a key/value storage repository and operates

much like Map.

Hashtable

4
Hashtable was part of the original java.util and is a concrete implementation of a

Dictionary.

Properties

5
Properties is a subclass of Hashtable. It is used to maintain lists of values in which the

key is a String and the value is also a String.

BitSet

6
A BitSet class creates a special type of array that holds bit values. This array can increase

in size as needed.

THE COLLECTION ALGORITHMS

The collections framework defines several algorithms that can be applied to collections and

maps. These algorithms are defined as static methods within the Collections class.

Several of the methods can throw a ClassCastException, which occurs when an attempt is

made to compare incompatible types, or an UnsupportedOperationException, which occurs

when an attempt is made to modify an unmodifiable collection.

Collections define three static variables: EMPTY_SET, EMPTY_LIST, and EMPTY_MAP. All

are immutable.

Sr.No. Algorithm & Description

The Collection Algorithms

1

Here is a list of all the algorithm implementation.

HOW TO USE AN ITERATOR ?

Often, you will want to cycle through the elements in a collection. For example, you might want

to display each element.

The easiest way to do this is to employ an iterator, which is an object that implements either the

Iterator or the ListIterator interface.

Iterator enables you to cycle through a collection, obtaining or removing elements. ListIterator

extends Iterator to allow bidirectional traversal of a list and the modification of elements.

https://www.tutorialspoint.com/java/java_stack_class.htm
https://www.tutorialspoint.com/java/java_dictionary_class.htm
https://www.tutorialspoint.com/java/java_hashtable_class.htm
https://www.tutorialspoint.com/java/java_properties_class.htm
https://www.tutorialspoint.com/java/java_bitset_class.htm
https://www.tutorialspoint.com/java/java_collection_algorithms.htm

CMRTC

II B.tech I Semester(IT) 98 Object Oriented Programming

Sr.No. Iterator Method & Description

Using Java Iterator

1
Here is a list of all the methods with examples provided by Iterator and ListIterator

interfaces.

JAVA ARRAYLIST CLASS

Java ArrayList class uses a dynamic array for storing the elements. It inherits AbstractList class

and implements List interface.

The important points about Java ArrayList class are:

 Java ArrayList class can contain duplicate elements.
 Java ArrayList class maintains insertion order.
 Java ArrayList class is non synchronized.
 Java ArrayList allows random access because array works at the index basis.
 In Java ArrayList class, manipulation is slow because a lot of shifting needs to be occurred if

any element is removed from the array list.

HIERARCHY OF ARRAYLIST CLASS

As shown in above diagram, Java ArrayList class extends AbstractList class which implements

List interface. The List interface extends Collection and Iterable interfaces in hierarchical order.

ARRAYLIST CLASS DECLARATION

Let's see the old non-generic example of creating java collection.

1. ArrayList al=new ArrayList();//creating old non-generic arraylist

Let's see the new generic example of creating java collection.

1. ArrayList<String> al=new ArrayList<String>();//creating new generic arraylist

In generic collection, we specify the type in angular braces. Now ArrayList is forced to have

only specified type of objects in it. If you try to add another type of object, it gives compile time

error.

JAVA ARRAYLIST EXAMPLE

1. import java.util.*;
2. class TestCollection1{
3. public static void main(String args[]){

https://www.tutorialspoint.com/java/java_using_iterator.htm

CMRTC

II B.tech I Semester(IT) 99 Object Oriented Programming

4. ArrayList<String> list=new ArrayList<String>();//Creating arraylist
5. list.add("Ravi");//Adding object in arraylist
6. list.add("Vijay");
7. list.add("Ravi");
8. list.add("Ajay");
9. //Traversing list through Iterator
10. Iterator itr=list.iterator();
11. while(itr.hasNext()){
12. System.out.println(itr.next());
13. }
14. }
15. }

Test it Now

Ravi

Vijay

Ravi

Ajay

TWO WAYS TO ITERATE THE ELEMENTS OF COLLECTION IN JAVA

There are two ways to traverse collection elements:

1. By Iterator interface.
2. By for-each loop.

In the above example, we have seen traversing ArrayList by Iterator. Let's see the example to

traverse ArrayList elements using for-each loop.

ITERATING COLLECTION THROUGH FOR-EACH LOOP

1. import java.util.*;
2. class TestCollection2{
3. public static void main(String args[]){
4. ArrayList<String> al=new ArrayList<String>();
5. al.add("Ravi");
6. al.add("Vijay");
7. al.add("Ravi");
8. al.add("Ajay");
9. for(String obj:al)
10. System.out.println(obj);
11. }
12. }

Test it Now

Ravi

Vijay

Ravi

Ajay

USER-DEFINED CLASS OBJECTS IN JAVA ARRAYLIST

http://www.javatpoint.com/opr/test.jsp?filename=TestCollection1
http://www.javatpoint.com/opr/test.jsp?filename=TestCollection2

CMRTC

II B.tech I Semester(IT) 100 Object Oriented Programming

Let's see an example where we are storing Student class object in array list.

1. class Student{
2. int rollno;
3. String name;
4. int age;
5. Student(int rollno,String name,int age){
6. this.rollno=rollno;
7. this.name=name;
8. this.age=age;
9. }
10. }

1. import java.util.*;
2. public class TestCollection3{
3. public static void main(String args[]){
4. //Creating user-defined class objects
5. Student s1=new Student(101,"Sonoo",23);
6. Student s2=new Student(102,"Ravi",21);
7. Student s2=new Student(103,"Hanumat",25);
8. //creating arraylist
9. ArrayList<Student> al=new ArrayList<Student>();
10. al.add(s1);//adding Student class object
11. al.add(s2);
12. al.add(s3);
13. //Getting Iterator
14. Iterator itr=al.iterator();
15. //traversing elements of ArrayList object
16. while(itr.hasNext()){
17. Student st=(Student)itr.next();
18. System.out.println(st.rollno+" "+st.name+" "+st.age);
19. }
20. }
21. }

Test it Now

101 Sonoo 23

102 Ravi 21
103 Hanumat 25

EXAMPLE OF ADDALL(COLLECTION C) METHOD

1. import java.util.*;
2. class TestCollection4{
3. public static void main(String args[]){
4. ArrayList<String> al=new ArrayList<String>();
5. al.add("Ravi");
6. al.add("Vijay");
7. al.add("Ajay");
8. ArrayList<String> al2=new ArrayList<String>();
9. al2.add("Sonoo");
10. al2.add("Hanumat");
11. al.addAll(al2);//adding second list in first list

http://www.javatpoint.com/opr/test.jsp?filename=TestCollection3

CMRTC

II B.tech I Semester(IT) 101 Object Oriented Programming

12. Iterator itr=al.iterator();
13. while(itr.hasNext()){
14. System.out.println(itr.next());
15. }
16. }
17. }

Test it Now

Ravi

Vijay

Ajay

Sonoo

Hanumat

EXAMPLE OF REMOVEALL() METHOD

1. import java.util.*;
2. class TestCollection5{
3. public static void main(String args[]){
4. ArrayList<String> al=new ArrayList<String>();
5. al.add("Ravi");
6. al.add("Vijay");
7. al.add("Ajay");
8. ArrayList<String> al2=new ArrayList<String>();
9. al2.add("Ravi");
10. al2.add("Hanumat");
11. al.removeAll(al2);
12. System.out.println("iterating the elements after removing the elements of al2...");
13. Iterator itr=al.iterator();
14. while(itr.hasNext()){
15. System.out.println(itr.next());
16. }
17.
18. }
19. }

Test it Now

iterating the elements after removing the elements of al2...

Vijay

Ajay

EXAMPLE OF RETAINALL() METHOD

1. import java.util.*;
2. class TestCollection6{
3. public static void main(String args[]){
4. ArrayList<String> al=new ArrayList<String>();
5. al.add("Ravi");
6. al.add("Vijay");
7. al.add("Ajay");
8. ArrayList<String> al2=new ArrayList<String>();

http://www.javatpoint.com/opr/test.jsp?filename=TestCollection4
http://www.javatpoint.com/opr/test.jsp?filename=TestCollection5

CMRTC

II B.tech I Semester(IT) 102 Object Oriented Programming

9. al2.add("Ravi");
10. al2.add("Hanumat");
11. al.retainAll(al2);
12. System.out.println("iterating the elements after retaining the elements of al2...");
13. Iterator itr=al.iterator();
14. while(itr.hasNext()){
15. System.out.println(itr.next());
16. }
17. }
18. }

Test it Now

iterating the elements after retaining the elements of al2...

Ravi

JAVA ARRAYLIST EXAMPLE: BOOK

Let's see an ArrayList example where we are adding books to list and printing all the books.

1. import java.util.*;
2. class Book {
3. int id;
4. String name,author,publisher;
5. int quantity;
6. public Book(int id, String name, String author, String publisher, int quantity) {
7. this.id = id;
8. this.name = name;
9. this.author = author;
10. this.publisher = publisher;
11. this.quantity = quantity;
12. }
13. }
14. public class ArrayListExample {
15. public static void main(String[] args) {
16. //Creating list of Books
17. List<Book> list=new ArrayList<Book>();
18. //Creating Books
19. Book b1=new Book(101,"Let us C","Yashwant Kanetkar","BPB",8);
20. Book b2=new Book(102,"Data Communications & Networking","Forouzan","Mc Graw Hil

l",4);
21. Book b3=new Book(103,"Operating System","Galvin","Wiley",6);
22. //Adding Books to list
23. list.add(b1);
24. list.add(b2);
25. list.add(b3);
26. //Traversing list
27. for(Book b:list){
28. System.out.println(b.id+" "+b.name+" "+b.author+" "+b.publisher+" "+b.quantity);
29. }
30. }
31. }

Test it Now

http://www.javatpoint.com/opr/test.jsp?filename=TestCollection6
http://www.javatpoint.com/opr/test.jsp?filename=TestCollection101

CMRTC

II B.tech I Semester(IT) 103 Object Oriented Programming

Output:

101 Let us C Yashwant Kanetkar BPB 8
102 Data Communications & Networking Forouzan Mc Graw Hill 4
103 Operating System Galvin Wiley 6

JAVA LINKEDLIST CLASS

Java LinkedList class uses doubly linked list to store the elements. It provides a linked-list data

structure. It inherits the AbstractList class and implements List and Deque interfaces.

The important points about Java LinkedList are:

 Java LinkedList class can contain duplicate elements.
 Java LinkedList class maintains insertion order.
 Java LinkedList class is non synchronized.
 In Java LinkedList class, manipulation is fast because no shifting needs to be occurred.
 Java LinkedList class can be used as list, stack or queue.

HIERARCHY OF LINKEDLIST CLASS

As shown in above diagram, Java LinkedList class extends AbstractSequentialList class and

implements List and Deque interfaces.

DOUBLY LINKED LIST

In case of doubly linked list, we can add or remove elements from both side.

LINKEDLIST CLASS DECLARATION

Let's see the declaration for java.util.LinkedList class.

1. public class LinkedList<E> extends AbstractSequentialList<E> implements List<E>, Deque

<E>, Cloneable, Serializable

CONSTRUCTORS OF JAVA LINKEDLIST

Constructor Description

LinkedList() It is used to construct an empty list.

CMRTC

II B.tech I Semester(IT) 104 Object Oriented Programming

LinkedList(Collection
c)

It is used to construct a list containing the elements of the specified
collection, in the order they are returned by the collection's iterator.

METHODS OF JAVA LINKEDLIST

Method Description

void add(int index, Object
element)

It is used to insert the specified element at the specified position index
in a list.

void addFirst(Object o) It is used to insert the given element at the beginning of a list.

void addLast(Object o) It is used to append the given element to the end of a list.

int size() It is used to return the number of elements in a list

boolean add(Object o) It is used to append the specified element to the end of a list.

boolean contains(Object o) It is used to return true if the list contains a specified element.

boolean remove(Object o)
It is used to remove the first occurence of the specified element in a

list.

Object getFirst() It is used to return the first element in a list.

Object getLast() It is used to return the last element in a list.

int indexOf(Object o)
It is used to return the index in a list of the first occurrence of the

specified element, or -1 if the list does not contain any element.

int lastIndexOf(Object o)
It is used to return the index in a list of the last occurrence of the
specified element, or -1 if the list does not contain any element.

JAVA LINKEDLIST EXAMPLE

import java.util.*;
public class TestCollection7{
public static void main(String args[]){

LinkedList<String> al=new LinkedList<String>();
al.add("Ravi");
al.add("Vijay");
al.add("Ravi");
al.add("Ajay");

Iterator<String> itr=al.iterator();
while(itr.hasNext()){

CMRTC

II B.tech I Semester(IT) 105 Object Oriented Programming

System.out.println(itr.next());

CMRTC

II B.tech I Semester(IT) 106 Object Oriented Programming

}
}
}

Test it Now
Output:Ravi

Vijay

Ravi

Ajay

JAVA LINKEDLIST EXAMPLE: BOOK

1. import java.util.*;
2. class Book {
3. int id;
4. String name,author,publisher;
5. int quantity;
6. public Book(int id, String name, String author, String publisher, int quantity) {
7. this.id = id;
8. this.name = name;
9. this.author = author;
10. this.publisher = publisher;
11. this.quantity = quantity;
12. }
13. }
14. public class LinkedListExample {
15. public static void main(String[] args) {
16. //Creating list of Books
17. List<Book> list=new LinkedList<Book>();
18. //Creating Books
19. Book b1=new Book(101,"Let us C","Yashwant Kanetkar","BPB",8);
20. Book b2=new Book(102,"Data Communications & Networking","Forouzan","Mc Graw Hil

l",4);
21. Book b3=new Book(103,"Operating System","Galvin","Wiley",6);
22. //Adding Books to list
23. list.add(b1);
24. list.add(b2);
25. list.add(b3);
26. //Traversing list
27. for(Book b:list){
28. System.out.println(b.id+" "+b.name+" "+b.author+" "+b.publisher+" "+b.quantity);
29. }
30. }
31. }

Output:

101 Let us C Yashwant Kanetkar BPB 8
102 Data Communications & Networking Forouzan Mc Graw Hill 4
103 Operating System Galvin Wiley 6

http://www.javatpoint.com/opr/test.jsp?filename=TestCollection7

CMRTC

II B.tech I Semester(IT) 107 Object Oriented Programming

JAVA HASHSET CLASS

Java HashSet class is used to create a collection that uses a hash table for storage. It inherits the

AbstractSet class and implements Set interface.

The important points about Java HashSet class are:

 HashSet stores the elements by using a mechanism called hashing.
 HashSet contains unique elements only.

DIFFERENCE BETWEEN LIST AND SET

List can contain duplicate elements whereas Set contains unique elements only.

HIERARCHY OF HASHSET CLASS

The HashSet class extends AbstractSet class which implements Set interface. The Set interface

inherits Collection and Iterable interfaces in hierarchical order.

HASHSET CLASS DECLARATION

Let's see the declaration for java.util.HashSet class.

1. public class HashSet<E> extends AbstractSet<E> implements Set<E>, Cloneable, Serializabl

e

CONSTRUCTORS OF JAVA HASHSET CLASS:

Constructor Description

HashSet() It is used to construct a default HashSet.

HashSet(Collection
c)

HashSet(int
capacity)

It is used to initialize the hash set by using the elements of the collection c.

It is used to initialize the capacity of the hash set to the given integer value
capacity. The capacity grows automatically as elements are added to the
HashSet.

METHODS OF JAVA HASHSET CLASS:

CMRTC

II B.tech I Semester(IT) 108 Object Oriented Programming

Method Description

void clear() It is used to remove all of the elements from this set.

boolean
contains(Object o)

It is used to return true if this set contains the specified element.

boolean add(Object o)
It is used to adds the specified element to this set if it is not already
present.

boolean isEmpty() It is used to return true if this set contains no elements.

boolean remove(Object

It is used to remove the specified element from this set if it is present.
o)

Object clone()
It is used to return a shallow copy of this HashSet instance: the elements
themselves are not cloned.

Iterator iterator() It is used to return an iterator over the elements in this set.

int size() It is used to return the number of elements in this set.

JAVA HASHSET EXAMPLE

1. import java.util.*;
2. class TestCollection9{
3. public static void main(String args[]){
4. //Creating HashSet and adding elements
5. HashSet<String> set=new HashSet<String>();
6. set.add("Ravi");
7. set.add("Vijay");
8. set.add("Ravi");
9. set.add("Ajay");
10. //Traversing elements
11. Iterator<String> itr=set.iterator();
12. while(itr.hasNext()){
13. System.out.println(itr.next());
14. }
15. }
16. }

Test it Now

Ajay

Vijay

Ravi

JAVA HASHSET EXAMPLE: BOOK

Let's see a HashSet example where we are adding books to set and printing all the books.

http://www.javatpoint.com/opr/test.jsp?filename=TestCollection9

CMRTC

II B.tech I Semester(IT) 109 Object Oriented Programming

1. import java.util.*;

CMRTC

II B.tech I Semester(IT) 110 Object Oriented Programming

2. class Book {
3. int id;
4. String name,author,publisher;
5. int quantity;
6. public Book(int id, String name, String author, String publisher, int quantity) {
7. this.id = id;
8. this.name = name;
9. this.author = author;
10. this.publisher = publisher;
11. this.quantity = quantity;
12. }
13. }
14. public class HashSetExample {
15. public static void main(String[] args) {
16. HashSet<Book> set=new HashSet<Book>();
17. //Creating Books
18. Book b1=new Book(101,"Let us C","Yashwant Kanetkar","BPB",8);
19. Book b2=new Book(102,"Data Communications & Networking","Forouzan","Mc Graw Hil

l",4);
20. Book b3=new Book(103,"Operating System","Galvin","Wiley",6);
21. //Adding Books to HashSet
22. set.add(b1);
23. set.add(b2);
24. set.add(b3);
25. //Traversing HashSet
26. for(Book b:set){
27. System.out.println(b.id+" "+b.name+" "+b.author+" "+b.publisher+" "+b.quantity);
28. }
29. }
30. }

Output:

101 Let us C Yashwant Kanetkar BPB 8

102 Data Communications & Networking Forouzan Mc Graw Hill 4
103 Operating System Galvin Wiley 6

JAVA TREESET CLASS

Java TreeSet class implements the Set interface that uses a tree for storage. It inherits

AbstractSet class and implements NavigableSet interface. The objects of TreeSet class are

stored in ascending order.

The important points about Java TreeSet class are:

 Contains unique elements only like HashSet.
 Access and retrieval times are quiet fast.

CMRTC

II B.tech I Semester(IT) 111 Object Oriented Programming

 Maintains ascending order.

HIERARCHY OF TREESET CLASS

As shown in above diagram, Java TreeSet class implements NavigableSet interface. The

NavigableSet interface extends SortedSet, Set, Collection and Iterable interfaces in hierarchical

order.

TREESET CLASS DECLARATION

Let's see the declaration for java.util.TreeSet class.

1. public class TreeSet<E> extends AbstractSet<E> implements NavigableSet<E>, Cloneable, S

erializable

CONSTRUCTORS OF JAVA TREESET CLASS

Constructor Description

TreeSet()
It is used to construct an empty tree set that will be sorted in an
ascending order according to the natural order of the tree set.

TreeSet(Collection c)
It is used to build a new tree set that contains the elements of the
collection c.

TreeSet(Comparator
comp)

It is used to construct an empty tree set that will be sorted according to
given comparator.

TreeSet(SortedSet ss)
It is used to build a TreeSet that contains the elements of the given
SortedSet.

METHODS OF JAVA TREESET CLASS

Method Description

boolean addAll(Collection
c)

It is used to add all of the elements in the specified collection to this
set.

boolean contains(Object o) It is used to return true if this set contains the specified element.

boolean isEmpty() It is used to return true if this set contains no elements.

boolean remove(Object o) It is used to remove the specified element from this set if it is present.

void add(Object o)
It is used to add the specified element to this set if it is not already

present.

CMRTC

II B.tech I Semester(IT) 112 Object Oriented Programming

void clear() It is used to remove all of the elements from this set.

Object clone() It is used to return a shallow copy of this TreeSet instance.

Object first()
It is used to return the first (lowest) element currently in this sorted
set.

Object last()
It is used to return the last (highest) element currently in this sorted
set.

int size() It is used to return the number of elements in this set.

JAVA TREESET EXAMPLE

1. import java.util.*;
2. class TestCollection11{
3. public static void main(String args[]){
4. //Creating and adding elements
5. TreeSet<String> al=new TreeSet<String>();
6. al.add("Ravi");
7. al.add("Vijay");
8. al.add("Ravi");
9. al.add("Ajay");
10. //Traversing elements
11. Iterator<String> itr=al.iterator();
12. while(itr.hasNext()){
13. System.out.println(itr.next());
14. }
15. }
16. }

Test it Now

Output:

Ajay

Ravi

Vijay

JAVA TREESET EXAMPLE: BOOK

Let's see a TreeSet example where we are adding books to set and printing all the books. The

elements in TreeSet must be of Comparable type. String and Wrapper classes are Comparable

by default. To add user-defined objects in TreeSet, you need to implement Comparable

interface.

1. import java.util.*;
2. class Book implements Comparable<Book>{
3. int id;
4. String name,author,publisher;
5. int quantity;
6. public Book(int id, String name, String author, String publisher, int quantity) {

http://www.javatpoint.com/opr/test.jsp?filename=TestCollection11

CMRTC

II B.tech I Semester(IT) 113 Object Oriented Programming

7. this.id = id;
8. this.name = name;
9. this.author = author;
10. this.publisher = publisher;
11. this.quantity = quantity;
12. }
13. public int compareTo(Book b) {
14. if(id>b.id){
15. return 1;
16. }else if(id<b.id){
17. return -1;
18. }else{
19. return 0;
20. }
21. }
22. }
23. public class TreeSetExample {
24. public static void main(String[] args) {
25. Set<Book> set=new TreeSet<Book>();
26. //Creating Books
27. Book b1=new Book(121,"Let us C","Yashwant Kanetkar","BPB",8);
28. Book b2=new Book(233,"Operating System","Galvin","Wiley",6);
29. Book b3=new Book(101,"Data Communications & Networking","Forouzan","Mc Graw Hil

l",4);
30. //Adding Books to TreeSet
31. set.add(b1);
32. set.add(b2);
33. set.add(b3);
34. //Traversing TreeSet
35. for(Book b:set){
36. System.out.println(b.id+" "+b.name+" "+b.author+" "+b.publisher+" "+b.quantity);
37. }
38. }
39. }

Output:

101 Data Communications & Networking Forouzan Mc Graw Hill 4

121 Let us C Yashwant Kanetkar BPB 8

233 Operating System Galvin Wiley 6

JAVA QUEUE INTERFACE

Java Queue interface orders the element in FIFO(First In First Out) manner. In FIFO, first

element is removed first and last element is removed at last.

QUEUE INTERFACE DECLARATION

1. public interface Queue<E> extends Collection<E>

CMRTC

II B.tech I Semester(IT) 114 Object Oriented Programming

METHODS OF JAVA QUEUE INTERFACE

Method Description

boolean
add(object)

boolean
offer(object)

It is used to insert the specified element into this queue and return true upon
success.

It is used to insert the specified element into this queue.

Object remove() It is used to retrieves and removes the head of this queue.

Object poll()
It is used to retrieves and removes the head of this queue, or returns null if this
queue is empty.

Object element() It is used to retrieves, but does not remove, the head of this queue.

Object peek()
It is used to retrieves, but does not remove, the head of this queue, or returns
null if this queue is empty.

PRIORITYQUEUE CLASS

The PriorityQueue class provides the facility of using queue. But it does not orders the elements

in FIFO manner. It inherits AbstractQueue class.

PRIORITYQUEUE CLASS DECLARATION

Let's see the declaration for java.util.PriorityQueue class.

1. public class PriorityQueue<E> extends AbstractQueue<E> implements Serializable

JAVA PRIORITYQUEUE EXAMPLE

1. import java.util.*;
2. class TestCollection12{
3. public static void main(String args[]){
4. PriorityQueue<String> queue=new PriorityQueue<String>();
5. queue.add("Amit");
6. queue.add("Vijay");
7. queue.add("Karan");
8. queue.add("Jai");
9. queue.add("Rahul");
10. System.out.println("head:"+queue.element());
11. System.out.println("head:"+queue.peek());
12. System.out.println("iterating the queue elements:");
13. Iterator itr=queue.iterator();
14. while(itr.hasNext()){
15. System.out.println(itr.next());
16. }

CMRTC

II B.tech I Semester(IT) 115 Object Oriented Programming

17. queue.remove();
18. queue.poll();
19. System.out.println("after removing two elements:");
20. Iterator<String> itr2=queue.iterator();
21. while(itr2.hasNext()){
22. System.out.println(itr2.next());
23. }
24. }
25. }

Test it Now
Output:head:Amit

head:Amit

iterating the queue elements:

Amit

Jai

Karan

Vijay

Rahul

after removing two elements:

Karan

Rahul

Vijay

JAVA PRIORITYQUEUE EXAMPLE: BOOK

Let's see a PriorityQueue example where we are adding books to queue and printing all the

books. The elements in PriorityQueue must be of Comparable type. String and Wrapper classes

are Comparable by default. To add user-defined objects in PriorityQueue, you need to

implement Comparable interface.

1. import java.util.*;
2. class Book implements Comparable<Book>{
3. int id;
4. String name,author,publisher;
5. int quantity;
6. public Book(int id, String name, String author, String publisher, int quantity) {
7. this.id = id;
8. this.name = name;
9. this.author = author;
10. this.publisher = publisher;
11. this.quantity = quantity;
12. }
13. public int compareTo(Book b) {
14. if(id>b.id){
15. return 1;
16. }else if(id<b.id){
17. return -1;
18. }else{
19. return 0;
20. }
21. }
22. }
23. public class LinkedListExample {
24. public static void main(String[] args) {

http://www.javatpoint.com/opr/test.jsp?filename=TestCollection12

CMRTC

II B.tech I Semester(IT) 116 Object Oriented Programming

25. Queue<Book> queue=new PriorityQueue<Book>();
26. //Creating Books
27. Book b1=new Book(121,"Let us C","Yashwant Kanetkar","BPB",8);
28. Book b2=new Book(233,"Operating System","Galvin","Wiley",6);
29. Book b3=new Book(101,"Data Communications & Networking","Forouzan","Mc Graw Hil

l",4);
30. //Adding Books to the queue
31. queue.add(b1);
32. queue.add(b2);
33. queue.add(b3);
34. System.out.println("Traversing the queue elements:");
35. //Traversing queue elements
36. for(Book b:queue){
37. System.out.println(b.id+" "+b.name+" "+b.author+" "+b.publisher+" "+b.quantity);
38. }
39. queue.remove();
40. System.out.println("After removing one book record:");
41. for(Book b:queue){
42. System.out.println(b.id+" "+b.name+" "+b.author+" "+b.publisher+" "+b.quantity);
43. }
44. }
45. }

Output:

Traversing the queue elements:

101 Data Communications & Networking Forouzan Mc Graw Hill 4

233 Operating System Galvin Wiley 6

121 Let us C Yashwant Kanetkar BPB 8

After removing one book record:

121 Let us C Yashwant Kanetkar BPB 8

233 Operating System Galvin Wiley 6

JAVA DEQUE INTERFACE

Java Deque Interface is a linear collection that supports element insertion and removal at both

ends. Deque is an acronym for "double ended queue".

DEQUE INTERFACE DECLARATION

1. public interface Deque<E> extends Queue<E>

METHODS OF JAVA DEQUE INTERFACE

Method Description

boolean
add(object)

It is used to insert the specified element into this deque and return true upon
success.

CMRTC

II B.tech I Semester(IT) 117 Object Oriented Programming

boolean
offer(object)

It is used to insert the specified element into this deque.

Object remove() It is used to retrieves and removes the head of this deque.

Object poll()
It is used to retrieves and removes the head of this deque, or returns null if this
deque is empty.

Object element() It is used to retrieves, but does not remove, the head of this deque.

Object peek()
It is used to retrieves, but does not remove, the head of this deque, or returns
null if this deque is empty.

ARRAYDEQUE CLASS

The ArrayDeque class provides the facility of using deque and resizable-array. It inherits

AbstractCollection class and implements the Deque interface.

The important points about ArrayDeque class are:

 Unlike Queue, we can add or remove elements from both sides.
 Null elements are not allowed in the ArrayDeque.
 ArrayDeque is not thread safe, in the absence of external synchronization.
 ArrayDeque has no capacity restrictions.
 ArrayDeque is faster than LinkedList and Stack.

ARRAYDEQUE HIERARCHY

The hierarchy of ArrayDeque class is given in the figure displayed at the right side of the page.

ARRAYDEQUE CLASS DECLARATION

Let's see the declaration for java.util.ArrayDeque class.

1. public class ArrayDeque<E> extends AbstractCollection<E> implements Deque<E>, Clonea

ble, Serializable

JAVA ARRAYDEQUE EXAMPLE

1. import java.util.*;
2. public class ArrayDequeExample {
3. public static void main(String[] args) {
4. //Creating Deque and adding elements
5. Deque<String> deque = new ArrayDeque<String>();

CMRTC

II B.tech I Semester(IT) 118 Object Oriented Programming

6. deque.add("Ravi");
7. deque.add("Vijay");
8. deque.add("Ajay");
9. //Traversing elements
10. for (String str : deque) {
11. System.out.println(str);
12. }
13. }
14. }

Output:

Ravi

Vijay

Ajay

JAVA ARRAYDEQUE EXAMPLE: OFFERFIRST() AND POLLLAST()

1. import java.util.*;
2. public class DequeExample {
3. public static void main(String[] args) {
4. Deque<String> deque=new ArrayDeque<String>();
5. deque.offer("arvind");
6. deque.offer("vimal");
7. deque.add("mukul");
8. deque.offerFirst("jai");
9. System.out.println("After offerFirst Traversal...");
10. for(String s:deque){
11. System.out.println(s);
12. }
13. //deque.poll();
14. //deque.pollFirst();//it is same as poll()
15. deque.pollLast();
16. System.out.println("After pollLast() Traversal...");
17. for(String s:deque){
18. System.out.println(s);
19. }
20. }
21. }

Output:

After offerFirst Traversal...

jai

arvind

vimal

mukul

After pollLast() Traversal...

jai

arvind

vimal

CMRTC

II B.tech I Semester(IT) 119 Object Oriented Programming

Iterator

Often, you will want to cycle through the elements in a collection. For example, you might want

to display each element. The easiest way to do this is to employ an iterator, which is an object

that implements either the Iterator or the ListIterator interface.

Iterator enables you to cycle through a collection, obtaining or removing elements. ListIterator

extends Iterator to allow bidirectional traversal of a list, and the modification of elements.

Before you can access a collection through an iterator, you must obtain one. Each of the

collection classes provides an iterator() method that returns an iterator to the start of the

collection. By using this iterator object, you can access each element in the collection, one

element at a time.

In general, to use an iterator to cycle through the contents of a collection, follow these steps −

 Obtain an iterator to the start of the collection by calling the collection's iterator()

method.

 Set up a loop that makes a call to hasNext(). Have the loop iterate as long as hasNext()

returns true.

 Within the loop, obtain each element by calling next().

For collections that implement List, you can also obtain an iterator by calling ListIterator.

THE METHODS DECLARED BY ITERATOR

Sr.No. Method & Description

1
boolean hasNext()

Returns true if there are more elements. Otherwise, returns false.

Object next()

2
Returns the next element. Throws NoSuchElementException if there is not a next
element.

void remove()

3
Removes the current element. Throws IllegalStateException if an attempt is made to call
remove() that is not preceded by a call to next().

THE METHODS DECLARED BY LISTITERATOR

Sr.No. Method & Description

void add(Object obj)

1
Inserts obj into the list in front of the element that will be returned by the next call to
next().

CMRTC

II B.tech I Semester(IT) 120 Object Oriented Programming

2
boolean hasNext()

Returns true if there is a next element. Otherwise, returns false.

3
boolean hasPrevious()

Returns true if there is a previous element. Otherwise, returns false.

Object next()

4
Returns the next element. A NoSuchElementException is thrown if there is not a next
element.

int nextIndex()

5
Returns the index of the next element. If there is not a next element, returns the size of
the list.

Object previous()

6
Returns the previous element. A NoSuchElementException is thrown if there is not a
previous element.

7
int previousIndex()

Returns the index of the previous element. If there is not a previous element, returns -1.

void remove()

8
Removes the current element from the list. An IllegalStateException is thrown if remove(
) is called before next() or previous() is invoked.

void set(Object obj)

9
Assigns obj to the current element. This is the element last returned by a call to either
next() or previous().

EXAMPLE

Here is an example demonstrating both Iterator and ListIterator. It uses an ArrayList object, but

the general principles apply to any type of collection.

Of course, ListIterator is available only to those collections that implement the List interface.

import java.util.*;

public class IteratorDemo {

public static void main(String args[]) {

// Create an array list

ArrayList al = new ArrayList();

// add elements to the array list

al.add("C");

al.add("A");

al.add("E");

al.add("B");

al.add("D");

al.add("F");

CMRTC

II B.tech I Semester(IT) 121 Object Oriented Programming

// Use iterator to display contents of al

System.out.print("Original contents of al: ");

Iterator itr = al.iterator();

while(itr.hasNext()) {

Object element = itr.next();

System.out.print(element + " ");

}

System.out.println();

// Modify objects being iterated

ListIterator litr = al.listIterator();

while(litr.hasNext()) {

Object element = litr.next();

litr.set(element + "+");

}

System.out.print("Modified contents of al: ");

itr = al.iterator();

while(itr.hasNext()) {

Object element = itr.next();

System.out.print(element + " ");

}

System.out.println();

// Now, display the list backwards

System.out.print("Modified list backwards: ");

while(litr.hasPrevious()) {

Object element = litr.previous();

System.out.print(element + " ");

}

System.out.println();

}

}

This will produce the following result −

OUTPUT

Original contents of al: C A E B D F

Modified contents of al: C+ A+ E+ B+ D+ F+

Modified list backwards: F+ D+ B+ E+ A+ C+

JAVA COMPARATOR INTERFACE

Java Comparator interface is used to order the objects of user-defined class.

This interface is found in java.util package and contains 2 methods compare(Object obj1,Object

obj2) and equals(Object element).

CMRTC

II B.tech I Semester(IT) 122 Object Oriented Programming

It provides multiple sorting sequence i.e. you can sort the elements on the basis of any data

member, for example rollno, name, age or anything else.

COMPARE() METHOD

public int compare(Object obj1,Object obj2): compares the first object with second object.

COLLECTIONS CLASS

Collections class provides static methods for sorting the elements of collection. If collection

elements are of Set or Map, we can use TreeSet or TreeMap. But we cannot sort the elements of

List. Collections class provides methods for sorting the elements of List type elements also.

METHOD OF COLLECTIONS CLASS FOR SORTING LIST ELEMENTS

public void sort(List list, Comparator c): is used to sort the elements of List by the given

Comparator.

JAVA COMPARATOR EXAMPLE (NON-GENERIC OLD STYLE)

Let's see the example of sorting the elements of List on the basis of age and name. In this

example, we have created 4 java classes:

1. Student.java
2. AgeComparator.java
3. NameComparator.java
4. Simple.java

Student.java

This class contains three fields rollno, name and age and a parameterized constructor.

1. class Student{
2. int rollno;
3. String name;
4. int age;
5. Student(int rollno,String name,int age){
6. this.rollno=rollno;
7. this.name=name;
8. this.age=age;
9. }
10. }

AgeComparator.java

CMRTC

II B.tech I Semester(IT) 123 Object Oriented Programming

This class defines comparison logic based on the age. If age of first object is greater than the

second, we are returning positive value, it can be any one such as 1, 2 , 10 etc. If age of first

object is less than the second object, we are returning negative value, it can be any negative

value and if age of both objects are equal, we are returning 0.

1. import java.util.*;
2. class AgeComparator implements Comparator{
3. public int compare(Object o1,Object o2){
4. Student s1=(Student)o1;
5. Student s2=(Student)o2;
6.
7. if(s1.age==s2.age)
8. return 0;
9. else if(s1.age>s2.age)
10. return 1;
11. else
12. return -1;
13. }
14. }

NameComparator.java

This class provides comparison logic based on the name. In such case, we are using the

compareTo() method of String class, which internally provides the comparison logic.

1. import java.util.*;
2. class NameComparator implements Comparator{
3. public int compare(Object o1,Object o2){
4. Student s1=(Student)o1;
5. Student s2=(Student)o2;
6.
7. return s1.name.compareTo(s2.name);
8. }
9. }

Simple.java

In this class, we are printing the objects values by sorting on the basis of name and age.

1. import java.util.*;
2. import java.io.*;
3.
4. class Simple{
5. public static void main(String args[]){
6.
7. ArrayList al=new ArrayList();
8. al.add(new Student(101,"Vijay",23));
9. al.add(new Student(106,"Ajay",27));
10. al.add(new Student(105,"Jai",21));
11.
12. System.out.println("Sorting by Name...");
13.
14. Collections.sort(al,new NameComparator());

CMRTC

II B.tech I Semester(IT) 124 Object Oriented Programming

15. Iterator itr=al.iterator();
16. while(itr.hasNext()){
17. Student st=(Student)itr.next();
18. System.out.println(st.rollno+" "+st.name+" "+st.age);
19. }
20.
21. System.out.println("sorting by age...");
22.
23. Collections.sort(al,new AgeComparator());
24. Iterator itr2=al.iterator();
25. while(itr2.hasNext()){
26. Student st=(Student)itr2.next();
27. System.out.println(st.rollno+" "+st.name+" "+st.age);
28. }
29.
30.
31. }
32. }

Sorting by Name...

106 Ajay 27

105 Jai 21

101 Vijay 23

Sorting by age...

105 Jai 21

101 Vijay 23

106 Ajay 27

Stack:

Stack is a subclass of Vector that implements a standard last-in, first-out stack.

Stack only defines the default constructor, which creates an empty stack. Stack includes all the

methods defined by Vector, and adds several of its own.

Stack()

Apart from the methods inherited from its parent class Vector, Stack defines the following

methods −

Sr.No. Method & Description

boolean empty()

1
Tests if this stack is empty. Returns true if the stack is empty, and returns false if the
stack contains elements.

2
Object peek()

Returns the element on the top of the stack, but does not remove it.

CMRTC

II B.tech I Semester(IT) 125 Object Oriented Programming

3
Object pop()

Returns the element on the top of the stack, removing it in the process.

4
Object push(Object element)

Pushes the element onto the stack. Element is also returned.

int search(Object element)

5
Searches for element in the stack. If found, its offset from the top of the stack is returned.
Otherwise, .1 is returned.

EXAMPLE

The following program illustrates several of the methods supported by this collection −

import java.util.*;

public class StackDemo {

static void showpush(Stack st, int a) {

st.push(new Integer(a));

System.out.println("push(" + a + ")");

System.out.println("stack: " + st);

}

static void showpop(Stack st) {

System.out.print("pop -> ");

Integer a = (Integer) st.pop();

System.out.println(a);

System.out.println("stack: " + st);

}

public static void main(String args[]) {

Stack st = new Stack();

System.out.println("stack: " + st);

showpush(st, 42);

showpush(st, 66);

showpush(st, 99);

showpop(st);

showpop(st);

showpop(st);

try {

showpop(st);

}catch (EmptyStackException e) {

System.out.println("empty stack");

}

}

}

This will produce the following result −

OUTPUT

stack: []

push(42)

stack: [42]

push(66)

CMRTC

II B.tech I Semester(IT) 126 Object Oriented Programming

stack: [42, 66]

push(99)

stack: [42, 66, 99]

pop -> 99

stack: [42, 66]

pop -> 66

stack: [42]

pop -> 42

stack: []

pop -> empty stack

Vector

Vector implements a dynamic array. It is similar to ArrayList, but with two differences −

 Vector is synchronized.

 Vector contains many legacy methods that are not part of the collections framework.

Vector proves to be very useful if you don't know the size of the array in advance or you just

need one that can change sizes over the lifetime of a program.

Following is the list of constructors provided by the vector class.

Sr.No. Constructor & Description

1
Vector()

This constructor creates a default vector, which has an initial size of 10.

Vector(int size)

2
This constructor accepts an argument that equals to the required size, and creates a vector
whose initial capacity is specified by size.

Vector(int size, int incr)

3 This constructor creates a vector whose initial capacity is specified by size and whose

increment is specified by incr. The increment specifies the number of elements to allocate

each time that a vector is resized upward.

4 Vector(Collection c)

This constructor creates a vector that contains the elements of collection c.

Apart from the methods inherited from its parent classes, Vector defines the following methods

−

Sr.No. Method & Description

1
void add(int index, Object element)

Inserts the specified element at the specified position in this Vector.

CMRTC

II B.tech I Semester(IT) 127 Object Oriented Programming

2
boolean add(Object o)

Appends the specified element to the end of this Vector.

boolean addAll(Collection c)

3
Appends all of the elements in the specified Collection to the end of this Vector, in the
order that they are returned by the specified Collection's Iterator.

boolean addAll(int index, Collection c)

4
Inserts all of the elements in in the specified Collection into this Vector at the specified
position.

5
void addElement(Object obj)

Adds the specified component to the end of this vector, increasing its size by one.

6
int capacity()

Returns the current capacity of this vector.

7
void clear()

Removes all of the elements from this vector.

8
Object clone()

Returns a clone of this vector.

9
boolean contains(Object elem)

Tests if the specified object is a component in this vector.

10
boolean containsAll(Collection c)

Returns true if this vector contains all of the elements in the specified Collection.

11
void copyInto(Object[] anArray)

Copies the components of this vector into the specified array.

12
Object elementAt(int index)

Returns the component at the specified index.

13
Enumeration elements()

Returns an enumeration of the components of this vector.

void ensureCapacity(int minCapacity)

14
Increases the capacity of this vector, if necessary, to ensure that it can hold at least the
number of components specified by the minimum capacity argument.

15
boolean equals(Object o)

Compares the specified Object with this vector for equality.

16
Object firstElement()

Returns the first component (the item at index 0) of this vector.

CMRTC

II B.tech I Semester(IT) 128 Object Oriented Programming

17
Object get(int index)

Returns the element at the specified position in this vector.

18
int hashCode()

Returns the hash code value for this vector.

int indexOf(Object elem)

19
Searches for the first occurence of the given argument, testing for equality using the
equals method.

int indexOf(Object elem, int index)

20
Searches for the first occurence of the given argument, beginning the search at index, and
testing for equality using the equals method.

21
void insertElementAt(Object obj, int index)

Inserts the specified object as a component in this vector at the specified index.

22
boolean isEmpty()

Tests if this vector has no components.

23
Object lastElement()

Returns the last component of the vector.

24
int lastIndexOf(Object elem)

Returns the index of the last occurrence of the specified object in this vector.

int lastIndexOf(Object elem, int index)

25
Searches backwards for the specified object, starting from the specified index, and returns
an index to it.

26
Object remove(int index)

Removes the element at the specified position in this vector.

boolean remove(Object o)

27
Removes the first occurrence of the specified element in this vector, If the vector does not
contain the element, it is unchanged.

boolean removeAll(Collection c)

28
Removes from this vector all of its elements that are contained in the specified
Collection.

29
void removeAllElements()

Removes all components from this vector and sets its size to zero.

30
boolean removeElement(Object obj)

Removes the first (lowest-indexed) occurrence of the argument from this vector.

CMRTC

II B.tech I Semester(IT) 129 Object Oriented Programming

31
void removeElementAt(int index)

removeElementAt(int index).

protected void removeRange(int fromIndex, int toIndex)

32
Removes from this List all of the elements whose index is between fromIndex, inclusive
and toIndex, exclusive.

33
boolean retainAll(Collection c)

Retains only the elements in this vector that are contained in the specified Collection.

34
Object set(int index, Object element)

Replaces the element at the specified position in this vector with the specified element.

35
void setElementAt(Object obj, int index)

Sets the component at the specified index of this vector to be the specified object.

36
void setSize(int newSize)

Sets the size of this vector.

37
int size()

Returns the number of components in this vector.

List subList(int fromIndex, int toIndex)

38
Returns a view of the portion of this List between fromIndex, inclusive, and toIndex,
exclusive.

39
Object[] toArray()

Returns an array containing all of the elements in this vector in the correct order.

Object[] toArray(Object[] a)

40
Returns an array containing all of the elements in this vector in the correct order; the
runtime type of the returned array is that of the specified array.

String toString()

41
Returns a string representation of this vector, containing the String representation of each
element.

42
void trimToSize()

Trims the capacity of this vector to be the vector's current size.

EXAMPLE

The following program illustrates several of the methods supported by this collection −

import java.util.*;

public class VectorDemo {

CMRTC

II B.tech I Semester(IT) 130 Object Oriented Programming

public static void main(String args[]) {

// initial size is 3, increment is 2

Vector v = new Vector(3, 2);

System.out.println("Initial size: " + v.size());

System.out.println("Initial capacity: " + v.capacity());

v.addElement(new Integer(1));

v.addElement(new Integer(2));

v.addElement(new Integer(3));

v.addElement(new Integer(4));

System.out.println("Capacity after four additions: " + v.capacity());

v.addElement(new Double(5.45));

System.out.println("Current capacity: " + v.capacity());

v.addElement(new Double(6.08));

v.addElement(new Integer(7));

System.out.println("Current capacity: " + v.capacity());

v.addElement(new Float(9.4));

v.addElement(new Integer(10));

System.out.println("Current capacity: " + v.capacity());

v.addElement(new Integer(11));

v.addElement(new Integer(12));

System.out.println("First element: " + (Integer)v.firstElement());

System.out.println("Last element: " + (Integer)v.lastElement());

if(v.contains(new Integer(3)))

System.out.println("Vector contains 3.");

// enumerate the elements in the vector.

Enumeration vEnum = v.elements();

System.out.println("\nElements in vector:");

while(vEnum.hasMoreElements())

System.out.print(vEnum.nextElement() + " ");

System.out.println();

}

}

This will produce the following result −

OUTPUT

Initial size: 0

Initial capacity: 3

Capacity after four additions: 5

Current capacity: 5

Current capacity: 7

Current capacity: 9

First element: 1

Last element: 12

Vector contains 3.

Elements in vector:

1 2 3 4 5.45 6.08 7 9.4 10 11 12

CMRTC

II B.tech I Semester(IT) 131 Object Oriented Programming

BIT SET

The BitSet class creates a special type of array that holds bit values. The BitSet array can

increase in size as needed. This makes it similar to a vector of bits. This is a legacy class but it

has been completely re-engineered in Java 2, version 1.4.

The BitSet defines the following two constructors.

Sr.No. Constructor & Description

1
BitSet()

This constructor creates a default object.

BitSet(int size)

2
This constructor allows you to specify its initial size, i.e., the number of bits that it can
hold. All bits are initialized to zero.

BitSet implements the Cloneable interface and defines the methods listed in the following table

−

Sr.No. Method & Description

void and(BitSet bitSet)

1
ANDs the contents of the invoking BitSet object with those specified by bitSet. The
result is placed into the invoking object.

2
void andNot(BitSet bitSet)

For each 1 bit in bitSet, the corresponding bit in the invoking BitSet is cleared.

3
int cardinality()

Returns the number of set bits in the invoking object.

4
void clear()

Zeros all bits.

5
void clear(int index)

Zeros the bit specified by index.

6
void clear(int startIndex, int endIndex)

Zeros the bits from startIndex to endIndex.

7
Object clone()

Duplicates the invoking BitSet object.

8
boolean equals(Object bitSet)

Returns true if the invoking bit set is equivalent to the one passed in bitSet. Otherwise,

CMRTC

II B.tech I Semester(IT) 132 Object Oriented Programming

the method returns false.

9
void flip(int index)

Reverses the bit specified by the index.

10
void flip(int startIndex, int endIndex)

Reverses the bits from startIndex to endIndex.

11
boolean get(int index)

Returns the current state of the bit at the specified index.

BitSet get(int startIndex, int endIndex)

12
Returns a BitSet that consists of the bits from startIndex to endIndex. The invoking object
is not changed.

13
int hashCode()

Returns the hash code for the invoking object.

boolean intersects(BitSet bitSet)

14
Returns true if at least one pair of corresponding bits within the invoking object and
bitSet are 1.

15
boolean isEmpty()

Returns true if all bits in the invoking object are zero.

int length()

16
Returns the number of bits required to hold the contents of the invoking BitSet. This
value is determined by the location of the last 1 bit.

int nextClearBit(int startIndex)

17
Returns the index of the next cleared bit, (that is, the next zero bit), starting from the
index specified by startIndex.

int nextSetBit(int startIndex)

18
Returns the index of the next set bit (that is, the next 1 bit), starting from the index
specified by startIndex. If no bit is set, -1 is returned.

void or(BitSet bitSet)

19
ORs the contents of the invoking BitSet object with that specified by bitSet. The result is
placed into the invoking object.

20
void set(int index)

Sets the bit specified by index.

void set(int index, boolean v)

21
Sets the bit specified by index to the value passed in v. True sets the bit, false clears the
bit.

CMRTC

II B.tech I Semester(IT) 133 Object Oriented Programming

22
void set(int startIndex, int endIndex)

Sets the bits from startIndex to endIndex.

void set(int startIndex, int endIndex, boolean v)

23
Sets the bits from startIndex to endIndex, to the value passed in v. true sets the bits, false
clears the bits.

24
int size()

Returns the number of bits in the invoking BitSet object.

25
String toString()

Returns the string equivalent of the invoking BitSet object.

void xor(BitSet bitSet)

26
XORs the contents of the invoking BitSet object with that specified by bitSet. The result
is placed into the invoking object.

EXAMPLE

The following program illustrates several of the methods supported by this data structure −

import java.util.BitSet;

public class BitSetDemo {

public static void main(String args[]) {

BitSet bits1 = new BitSet(16);

BitSet bits2 = new BitSet(16);

// set some bits

for(int i = 0; i < 16; i++) {

if((i % 2) == 0) bits1.set(i);

if((i % 5) != 0) bits2.set(i);

}

System.out.println("Initial pattern in bits1: ");

System.out.println(bits1);

System.out.println("\nInitial pattern in bits2: ");

System.out.println(bits2);

// AND bits

bits2.and(bits1);

System.out.println("\nbits2 AND bits1: ");

System.out.println(bits2);

// OR bits

bits2.or(bits1);

System.out.println("\nbits2 OR bits1: ");

System.out.println(bits2);

// XOR bits

bits2.xor(bits1);

System.out.println("\nbits2 XOR bits1: ");

System.out.println(bits2);

}

CMRTC

II B.tech I Semester(IT) 134 Object Oriented Programming

}

This will produce the following result −

OUTPUT

Initial pattern in bits1:

{0, 2, 4, 6, 8, 10, 12, 14}

Initial pattern in bits2:

{1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14}

bits2 AND bits1:

{2, 4, 6, 8, 12, 14}

bits2 OR bits1:

{0, 2, 4, 6, 8, 10, 12, 14}

bits2 XOR bits1:

{}

JAVA CALENDAR CLASS

Java Calendar class is an abstract class that provides methods for converting date between a

specific instant in time and a set of calendar fields such as MONTH, YEAR, HOUR, etc. It

inherits Object class and implements the Comparable interface.

JAVA CALENDAR CLASS DECLARATION

Let's see the declaration of java.util.Calendar class.

1. public abstract class Calendar extends Object
2. implements Serializable, Cloneable, Comparable<Calendar>

METHODS OF JAVA CALENDAR

Method Description

abstract void add(int field,
int amount)

It is used to add or subtract the specified amount of time to the given
calendar field, based on the calendar's rules.

int get(int field) It is used to return the value of the given calendar field.

static Calendar getInstance() It is used to get a calendar using the default time zone and locale.

abstract int getMaximum(int It is used to return the maximum value for the given calendar field of

field) this Calendar instance.

abstract int getMinimum(int It is used to return the minimum value for the given calendar field of

CMRTC

II B.tech I Semester(IT) 135 Object Oriented Programming

field) this Calendar instance.

void set(int field, int value) It is used to set the given calendar field to the given value.

void setTime(Date date) It is used to set this Calendar's time with the given Date.

Date getTime()
It is used to return a Date object representing this Calendar's time

value.

JAVA CALENDAR CLASS EXAMPLE

1. import java.util.Calendar;
2. public class CalendarExample {
3. public static void main(String[] args) {
4. Calendar calendar = Calendar.getInstance();
5. System.out.println("The current date is : " + calendar.getTime());
6. calendar.add(Calendar.DATE, -15);
7. System.out.println("15 days ago: " + calendar.getTime());
8. calendar.add(Calendar.MONTH, 4);
9. System.out.println("4 months later: " + calendar.getTime());
10. calendar.add(Calendar.YEAR, 2);
11. System.out.println("2 years later: " + calendar.getTime());
12. }
13. }

Output:

The current date is : Thu Jan 19 18:47:02 IST 2017

15 days ago: Wed Jan 04 18:47:02 IST 2017

4 months later: Thu May 04 18:47:02 IST 2017

2 years later: Sat May 04 18:47:02 IST 2019

DATE

Java provides the Date class available in java.util package, this class encapsulates the current

date and time.

The Date class supports two constructors as shown in the following table.

Sr.No. Constructor & Description

1
Date()

This constructor initializes the object with the current date and time.

Date(long millisec)

2
This constructor accepts an argument that equals the number of milliseconds that have
elapsed since midnight, January 1, 1970.

CMRTC

II B.tech I Semester(IT) 136 Object Oriented Programming

Following are the methods of the date class.

Sr.No. Method & Description

boolean after(Date date)

1
Returns true if the invoking Date object contains a date that is later than the one specified
by date, otherwise, it returns false.

boolean before(Date date)

2
Returns true if the invoking Date object contains a date that is earlier than the one
specified by date, otherwise, it returns false.

3
Object clone()

Duplicates the invoking Date object.

int compareTo(Date date)

4
Compares the value of the invoking object with that of date. Returns 0 if the values are

equal. Returns a negative value if the invoking object is earlier than date. Returns a

positive value if the invoking object is later than date.

int compareTo(Object obj)

5
Operates identically to compareTo(Date) if obj is of class Date. Otherwise, it throws a
ClassCastException.

boolean equals(Object date)

6
Returns true if the invoking Date object contains the same time and date as the one
specified by date, otherwise, it returns false.

7
long getTime()

Returns the number of milliseconds that have elapsed since January 1, 1970.

8
int hashCode()

Returns a hash code for the invoking object.

void setTime(long time)

9
Sets the time and date as specified by time, which represents an elapsed time in
milliseconds from midnight, January 1, 1970.

10
String toString()

Converts the invoking Date object into a string and returns the result.

GETTING CURRENT DATE AND TIME

This is a very easy method to get current date and time in Java. You can use a simple Date

object with toString() method to print the current date and time as follows −

EXAMPLE

CMRTC

II B.tech I Semester(IT) 137 Object Oriented Programming

import java.util.Date;

public class DateDemo {

public static void main(String args[]) {

// Instantiate a Date object

Date date = new Date();

// display time and date using toString()

System.out.println(date.toString());

}

}

This will produce the following result −

OUTPUT

on May 04 09:51:52 CDT 2009

CMRTC

II B.tech I Semester(IT) 138 Object Oriented Programming

UNIT-V

AWT

AWT Classes

The AWT classes are contained in the java.awt package. It is one of Java’s largest packages.

Fortunately, because it is logically organized in a top-down, hierarchical fashion, it is easier to

understand and use than you might at first believe. Table lists some of the many AWT classes.

Class Description

AWTEvent Encapsulates AWT events.

BorderLayout The border layout manager. Border layouts use

Five components: North, South, East, West, and

Center.

Button Creates a push button control.

Canvas A blank, semantics-free window.

CardLayout The card layout manager. Card layouts emulate

index cards. Only the one on top is showing.

Checkbox Creates a check box control.

CheckboxGroup Creates a group of check box controls.

CheckboxMenuItem Creates an on/off menu item.

Choice Creates a pop-up list.

Color Manages colors in a portable, platform-independent

Fashion.

Component An abstract superclass for various AWT components.

Container A subclass of Component that can hold other

components.

Cursor Encapsulates a bitmapped cursor.

Dialog Creates a dialog window.

Event Encapsulates events.

FileDialog Creates a window from which a file can be selected.

FlowLayout The flow layout manager. Flow layout positions

components left to right, top to bottom.

Font Encapsulates a type font.

Frame Creates a standard window that has a title bar, resize

corners, and a menu bar.

Graphics Encapsulates the graphics context. This context is

used by the various output methods to display

output in a window.

GridBagLayout The grid bag layout manager. Grid bag layout

Displays components subject to the constraints

specified by GridBagConstraints.

GridLayout The grid layout manager. Grid layout displays

components in a two-dimensional grid.

Image Encapsulates graphical images.

Label Creates a label that displays a string.

List Creates a list from which the user can choose. Similar

to the standard Windows list box.

Menu Creates a pull-down menu.

CMRTC

II B.tech I Semester(IT) 139 Object Oriented Programming

MenuBar Creates a menu bar.

MenuComponent An abstract class implemented by various menu classes.

MenuItem Creates a menu item.

Scrollbar Creates a scroll bar control.

ScrollPane A container that provides horizontal and/or vertical scroll

bars for another component.

SystemColor Contains the colors of GUI widgets such as windows, scroll

bars, text, and others.

TextArea Creates a multiline edit control.

TextComponent A superclass for TextArea and TextField.

TextField Creates a single-line edit control.

Window Creates a window with no frame, no menu bar, and no title.

Window Fundamentals:

The AWT defines windows according to a class hierarchy that adds functionality and specificity

with each level. The two most common windows are those derived from Panel, which is used by

applets, and those derived from Frame, which creates a standard window. Much of the

functionality of these windows is derived from their parent classes. Thus, a description of the

class hierarchies relating to these two classes is fundamental to their understanding

the class hierarchy for Panel and Frame.

COMPONENT

CONTAINER

WINDOW PANEL

FRAME

Component:

At the top of the AWT hierarchy is the Component class. Component is an abstract class that

encapsulates all of the attributes of a visual component. All user interface elements that are

displayed on the screen and that interact with the user are subclasses of Component. It defines

over a hundred public methods that are responsible for managing events, such as mouse and

keyboard input, positioning and sizing the window, and repainting. A Component object is

responsible for remembering the current foreground and background colors and the currently

selected text font.

Container:

The Container class is a subclass of Component. It has additional methods that allow other

Component objects to be nested within it. Other Container objects can be stored inside of a

Container (since they are themselves instances of Component). This makes for a multileveled

containment system. A container is responsible for laying out (that is, positioning) any

components that it contains. It does this through the use of various layout managers.

Panel:

The Panel class is a concrete subclass of Container. It doesn’t add any new methods; it simply

implements Container. A Panel may be thought of as a recursively nestable, concrete screen

component. Panel is the superclass for Applet. When screen output is directed to an applet, it is

CMRTC

II B.tech I Semester(IT) 140 Object Oriented Programming

drawn on the surface of a Panel object. In essence, a Panel is a window that does not contain a

title bar, menu bar, or border. This is why you don’t see these items when an applet is run inside

a browser. When you run an applet using an applet viewer, the applet viewer provides the title

and border.

Other components can be added to a Panel object by its add() method (inherited from

Container). Once these components have been added, you can position and resize them manually

using the setLocation(), setSize(), or setBounds() methods defined by Component. Window:

The Window class creates a top-level window. A top-level window is not contained within any

other object; it sits directly on the desktop. Generally, you won’t create Window objects directly.

Instead, you will use a subclass of Window called Frame.

Frame:

Frame encapsulates what is commonly thought of as a ―window.‖ It is a subclass of Window

and has a title bar, menu bar, borders, and resizing corners. If you create a Frame object from

within an applet, it will contain a warning message, such as ―Java Applet Window,‖ to the user

that an applet window has been created. This message warns users that the window they see was

started by an applet and not by software running on their computer. (An applet that could

masquerade as a host-based application could be used to obtain passwords and other sensitive

information without the user’s knowledge.) When a Frame window is created by a program rather

than an applet, a normal window is created.

Canvas:

Although it is not part of the hierarchy for applet or frame windows, there is one other type of

window that you will find valuable: Canvas. Canvas encapsulates a blank window upon which

you can draw

.

Working with Frame Windows:

After the applet, the type of window you will most often create is derived from Frame. You will

use it to create child windows within applets, and top-level or child windows for applications.

As mentioned, it creates a standard-style window.

Here are two of Frame’s constructors:

Frame()

Frame(String title)

The first form creates a standard window that does not contain a title. The second form creates a

window with the title specified by title. Notice that you cannot specify the dimensions of the

window. Instead, you must set the size of the window after it has been created.

There are several methods you will use when working with Frame windows. They are examined

here.

1. Setting the Window’s Dimensions

The setSize() method is used to set the dimensions of the window. Its signature is shown here:

void setSize(int newWidth, int newHeight)

void setSize(Dimension newSize)

The new size of the window is specified by newWidth and newHeight, or by the width and height

fields of the Dimension object passed in newSize. The dimensions are specified in terms of pixels.

The getSize() method is used to obtain the current size of a window. Its signature is shown here:

Dimension getSize()

This method returns the current size of the window contained within the width and height fields

of a Dimension object.

2. Hiding and Showing a Window

CMRTC

II B.tech I Semester(IT) 141 Object Oriented Programming

After a frame window has been created, it will not be visible until you call setVisible(). Its

signature is shown here:

void setVisible(boolean visibleFlag)

The component is visible if the argument to this method is true. Otherwise, it is hidden.

3. Setting a Window’s Title

You can change the title in a frame window using setTitle(), which has this general form:

void setTitle(String newTitle)

Here, newTitle is the new title for the window.

4. Closing a Frame Window

When using a frame window, your program must remove that window from the screen when it

is closed, by calling setVisible(false). To intercept a window-close event, you must implement

the windowClosing() method of the WindowListener interface. Inside windowClosing(), you

must remove the window from the screen.

Creating a Frame Window in an Applet:

While it is possible to simply create a window by creating an instance of Frame, you will seldom

do so, because you will not be able to do much with it. For example, you will not be able to receive

or process events that occur within it or easily output information to it. Most of the time, you will

create a subclass of Frame. Doing so lets you override Frame’s methods and event handling.

Creating a new frame window from within an applet is actually quite easy. First, create a subclass

of Frame. Next, override any of the standard window methods, such as init(), start(), stop(),

and paint(). Finally, implement the windowClosing() method of the WindowListener

interface, calling setVisible(false) when the window is closed. Once you have defined a Frame

subclass, you can create an object of that class. This causes a frame window to come into

existence, but it will not be initially visible. You make it visible by calling setVisible(

). When created, the window is given a default height and width. You can set the size of the

window explicitly by calling the setSize() method.

The following applet creates a subclass of Frame called SampleFrame. A window of this

subclass is instantiated within the init() method of AppletFrame. Notice that SampleFrame

calls Frame’s constructor. This causes a standard frame window to be created with the title passed

in title. This example overrides the applet window’s start() and stop() methods so that they

show and hide the child window, respectively.

This causes the window to be removed automatically when you terminate the applet, when you

close the window, or, if using a browser, when you move to another page. It also causes the child

window to be shown when the browser returns to the applet.

// Create a child frame window from within an applet.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="AppletFrame" width=300 height=50>

</applet>

*/

// Create a subclass of Frame.

class SampleFrame extends Frame {

SampleFrame(String title) {

super(title);

// create an object to handle window events

MyWindowAdapter adapter = new MyWindowAdapter(this);

// register it to receive those events

CMRTC

II B.tech I Semester(IT) 142 Object Oriented Programming

addWindowListener(adapter);

}

public void paint(Graphics g) {

g.drawString("This is in frame window", 10, 40);

}

}

class MyWindowAdapter extends WindowAdapter {

SampleFrame sampleFrame;

public MyWindowAdapter(SampleFrame sampleFrame) {

this.sampleFrame = sampleFrame;

}

public void windowClosing(WindowEvent we) {

sampleFrame.setVisible(false);

}

}

// Create frame window.

public class AppletFrame extends Applet {

Frame f;

public void init() {

f = new SampleFrame("A Frame Window");

f.setSize(250, 250);

f.setVisible(true);

}

public void start() {

f.setVisible(true);

}

public void stop() {

f.setVisible(false);

}

public void paint(Graphics g) {

g.drawString("This is in applet window", 10, 20);

}

}

Sample output from this program is shown here:

Event Handling

CMRTC

II B.tech I Semester(IT) 143 Object Oriented Programming

Applets are event-driven programs. Thus, event handling is at the core of successful applet

programming. Most events to which your applet will respond are generated by the user. These

events are passed to your applet in a variety of ways, with the specific method depending upon

the actual event. There are several types of events. The most commonly handled events are

those generated by the mouse, the keyboard, and various controls, such as a push button. Events

are supported by the java.awt.event package.

Two Event Handling Mechanisms:

The Delegation Event Model
The modern approach to handling events is based on the delegation event model, which defines

standard and consistent mechanisms to generate and process events. Its concept is quite simple:

a source generates an event and sends it to one or more listeners. In this scheme, the listener

simply waits until it receives an event. Once received, the listener processes the event and then

returns. The advantage of this design is that the application logic that processes events is cleanly

separated from the user interface logic that generates

those events. A user interface element is able to ―delegate‖ the processing of an event to a

separate piece of code.

In the delegation event model, listeners must register with a source in order to receive an event

notification. This provides an important benefit: notifications are sent only to listeners that want

to receive them. This is a more efficient way to handle events than the design used by the old Java

1.0 approach. Previously, an event was propagated up the containment hierarchy until it was

handled by a component. This required components to receive events that they did not process,

and it wasted valuable time. The delegation event model eliminates this overhead.

Java also allows you to process events without using the delegation event model. This can be done

by extending an AWT component.

Events:

In the delegation model, an event is an object that describes a state change in a source. It can be

generated as a consequence of a person interacting with the elements in a graphical user interface.

Some of the activities that cause events to be generated are pressing a button, entering a character

via the keyboard, selecting an item in a list, and clicking the mouse. Events may also occur that

are not directly caused by interactions with a user interface.

For example, an event may be generated when a timer expires, a counter exceeds a value, a

software or hardware failure occurs, or an operation is completed. You are free to define events

that are appropriate for your application.

Event Sources:

A source is an object that generates an event. This occurs when the internal state of that object

changes in some way. Sources may generate more than one type of event. A source must register

listeners in order for the listeners to receive notifications about a specific type of event. Each type

of event has its own registration method.

Here is the general form:

public void addTypeListener(TypeListener el)

Here, Type is the name of the event and el is a reference to the event listener. For example,

the method that registers a keyboard event listener is called addKeyListener(). The method

that registers a mouse motion listener is called addMouseMotionListener().

When an event occurs, all registered listeners are notified and receive a copy of the event object.

This is known as multicasting the event. In all cases, notifications are sent only to listeners that

register to receive them.

Some sources may allow only one listener to register. The general form of such a method is this:

public void addTypeListener(TypeListener el) throws java.util.TooManyListenersException

CMRTC

II B.tech I Semester(IT) 144 Object Oriented Programming

Here, Type is the name of the event and el is a reference to the event listener. When such an event

occurs, the registered listener is notified. This is known as unicasting the event. A source must

also provide a method that allows a listener to unregister an interest in a specific type of event.

The general form of such a method is this:

public void removeTypeListener(TypeListener el)

Here, Type is the name of the event and el is a reference to the event listener. For example, to

remove a keyboard listener, you would call removeKeyListener().

The methods that add or remove listeners are provided by the source that generates events. For

example, the Component class provides methods to add and remove keyboard and mouse event

listeners.

Event Listeners:

A listener is an object that is notified when an event occurs. It has two major requirements. First,

it must have been registered with one or more sources to receive notifications about specific types

of events. Second, it must implement methods to receive and process these notifications.

The methods that receive and process events are defined in a set of interfaces found in

java.awt.event. For example, the MouseMotionListener interface defines two methods to

receive notifications when the mouse is dragged or moved. Any object may receive and process

one or both of these events if it provides an implementation of this interface.

Event Classes:

The classes that represent events are at the core of Java’s event handling mechanism. At the root

of the Java event class hierarchy is EventObject, which is in java.util. It is the superclass for all

events.

Its one constructor is shown here:

EventObject(Object src)

Here, src is the object that generates this event.

EventObject contains two methods: getSource() and toString(). The getSource() method

returns the source of the event.

Its general form is shown here:

Object getSource()

toString() returns the string equivalent of the event.

The class AWTEvent, defined within the java.awt package, is a subclass of EventObject. It is

the superclass (either directly or indirectly) of all AWT-based events used by the delegation event

model. Its getID() method can be used to determine the type of the event. The signature of this

method is shown here:

int getID()

■ EventObject is a superclass of all events.

■ AWTEvent is a superclass of all AWT events that are handled by the delegation event model.

The package java.awt.event defines several types of events that are generated by various user

interface elements.

Main Event Classes in java.awt.event:

Event Class Description

ActionEvent Generated when a button is pressed, a list item is double-

clicked, or a menu item is selected.

AdjustmentEvent Generated when a scroll bar is manipulated.

ComponentEvent Generated when a component is hidden, moved, resized, or

CMRTC

II B.tech I Semester(IT) 145 Object Oriented Programming

becomes visible.

ContainerEvent Generated when a component is added to or removed from a

container.

FocusEvent Generated when a component gains or loses keyboard focus.

InputEvent Abstract super class for all component input event classes.

ItemEvent Generated when a check box or list item is clicked; also occurs

when a choice selection is made or a checkable menu item is

selected or deselected.

KeyEvent Generated when input is received from the keyboard.

MouseEvent Generated when the mouse is dragged, moved, clicked,

pressed, or released; also generated when the mouse enters

or exits a component.

MouseWheelEvent Generated when the mouse wheel is moved.

TextEvent Generated when the value of a text area or text field is changed.

WindowEvent Generated when a window is activated, closed, deactivated,

deiconified, iconified, opened, or quit.

The ActionEvent Class:

An ActionEvent is generated when a button is pressed, a list item is double-clicked, or a menu

item is selected. The ActionEvent class defines four integer constants that can be used to identify

any modifiers associated with an action event: ALT_MASK, CTRL_MASK, META_MASK,

and SHIFT_MASK. In addition, there is an integer constant, ACTION_PERFORMED, which

can be used to identify action events.

ActionEvent has these three constructors:

ActionEvent(Object src, int type, String cmd)

ActionEvent(Object src, int type, String cmd, int modifiers)

ActionEvent(Object src, int type, String cmd, long when, int modifiers)

Here, src is a reference to the object that generated this event. The type of the event is specified

by type, and its command string is cmd. The argument modifiers indicates which modifier keys

(ALT, CTRL, META, and/or SHIFT) were pressed when the event was generated. The when

parameter specifies when the event occurred.

You can obtain the command name for the invoking ActionEvent object by using the

getActionCommand() method, shown here:

String getActionCommand()

For example, when a button is pressed, an action event is generated that has a command name

equal to the label on that button.

The getModifiers() method returns a value that indicates which modifier keys (ALT, CTRL,

META, and/or SHIFT) were pressed when the event was generated.

Its form is shown here:

Event Class Description

int getModifiers()

the method getWhen() that returns the time at which the event took place. This is called the

event’s timestamp. The getWhen() method is shown here.

long getWhen()

The AdjustmentEvent Class:

An AdjustmentEvent is generated by a scroll bar. There are five types of adjustment events. The

AdjustmentEvent class defines integer constants that can be used to identify them. The constants

and their meanings are shown here:

BLOCK_DECREMENT The user clicked inside the scroll bar to decrease its value.

BLOCK_INCREMENT The user clicked inside the scroll bar to increase its value.

CMRTC

II B.tech I Semester(IT) 146 Object Oriented Programming

TRACK The slider was dragged.

UNIT_DECREMENT The button at the end of the scroll bar was clicked to decrease its value.

UNIT_INCREMENT The button at the end of the scroll bar was clicked to increase its value.

In addition, there is an integer constant, ADJUSTMENT_VALUE_CHANGED, that indicates

that a change has occurred.

Here is one AdjustmentEvent constructor:

AdjustmentEvent(Adjustable src, int id, int type, int data)

Here, src is a reference to the object that generated this event. The id equals

ADJUSTMENT_VALUE_CHANGED. The type of the event is specified by type, and its

associated data is data.

The getAdjustable() method returns the object that generated the event. Its form is shown here:

Adjustable getAdjustable()

The type of the adjustment event may be obtained by the getAdjustmentType() method. It

returns one of the constants defined by AdjustmentEvent. The general form is shown here:

int getAdjustmentType()

the amount of the adjustment can be obtained from the getValue() method, shown here:

int getValue()

For example, when a scroll bar is manipulated, this method returns the value represented by that

change.

The ComponentEvent Class:

A ComponentEvent is generated when the size, position, or visibility of a component is

changed. There are four types of component events. The ComponentEvent class defines integer

constants that can be used to identify them. The constants and their meanings are shown here:

COMPONENT_HIDDEN The component was hidden.

COMPONENT_MOVED The component was moved.

COMPONENT_RESIZED The component was resized.

COMPONENT_SHOWN The component became visible.

ComponentEvent has this constructor:

ComponentEvent(Component src, int type)

Here, src is a reference to the object that generated this event. The type of the event is specified

by type.

ComponentEvent is the superclass either directly or indirectly of ContainerEvent,

FocusEvent, KeyEvent, MouseEvent, and WindowEvent.

The getComponent() method returns the component that generated the event. It is shown here:

Component getComponent()

The ContainerEvent Class:

A ContainerEvent is generated when a component is added to or removed from a container.

There are two types of container events. The ContainerEvent class defines int constants that can

be used to identify them: COMPONENT_ADDED and COMPONENT_REMOVED. They

indicate that a component has been added to or removed from the container.

ContainerEvent is a subclass of ComponentEvent and has this constructor:

ContainerEvent(Component src, int type, Component comp)

Here, src is a reference to the container that generated this event. The type of the event is specified

by type, and the component that has been added to or removed from the container is comp.

You can obtain a reference to the container that generated this event by using the getContainer(

) method, shown here:

Container getContainer()

CMRTC

II B.tech I Semester(IT) 147 Object Oriented Programming

The getChild() method returns a reference to the component that was added to or removed

from the container. Its general form is shown here:

Component getChild()

The FocusEvent Class:

A FocusEvent is generated when a component gains or loses input focus. These events are

identified by the integer constants FOCUS_GAINED and FOCUS_LOST. FocusEvent is a

subclass of ComponentEvent and has these constructors:

FocusEvent(Component src, int type)

FocusEvent(Component src, int type, boolean temporaryFlag)

Focus Event(Component src, int type, boolean temporaryFlag, Component other)

Here, src is a reference to the component that generated this event. The type of the event is

specified by type. The argument temporaryFlag is set to true if the focus event is temporary.

Otherwise, it is set to false. (A temporary focus event occurs as a result of another user interface

operation. For example, assume that the focus is in a text field.

If the user moves the mouse to adjust a scroll bar, the focus is temporarily lost.) The other

component involved in the focus change, called the opposite component, is passed in other.

Therefore, if a FOCUS_GAINED event occurred, other will refer to the component that lost

focus. Conversely, if a FOCUS_LOST event occurred, other will refer to the component that

gains focus. You can determine the other component by calling getOppositeComponent(),

shown here.

Component getOppositeComponent()

The opposite component is returned. The isTemporary() method indicates if this focus change

is temporary. Its form is shown here:

boolean isTemporary()

The method returns true if the change is temporary. Otherwise, it returns false.

The InputEvent Class:

The abstract class InputEvent is a subclass of ComponentEvent and is the superclass for

component input events. Its subclasses are KeyEvent and MouseEvent. InputEvent defines

several integer constants that represent any modifiers, such as the control key being pressed, that

might be associated with the event. Originally, the InputEvent class defined the following eight

values to represent the modifiers.

ALT_MASK BUTTON2_MASK META_MASK

ALT_GRAPH_MASK BUTTON3_MASK SHIFT_MASK

BUTTON1_MASK CTRL_MASK

However, because of possible conflicts between the modifiers used by keyboard events and mouse

events, and other issues, Java 2, version 1.4 added the following extended modifier values.

ALT_DOWN_MASK ALT_GRAPH_DOWN_MASK BUTTON1_DOWN_MASK

BUTTON2_DOWN_MASK BUTTON3_DOWN_MASK CTRL_DOWN_MASK

META_DOWN_MASK SHIFT_DOWN_MASK

When writing new code, it is recommended that you use the new, extended modifiers rather than

the original modifiers.

To test if a modifier was pressed at the time an event is generated, use the isAltDown(),

isAltGraphDown(), isControlDown(), isMetaDown(), and isShiftDown() methods. The

forms of these methods are shown here:

boolean isAltDown()

boolean isAltGraphDown()

boolean isControlDown()

boolean isMetaDown()

CMRTC

II B.tech I Semester(IT) 148 Object Oriented Programming

boolean isShiftDown()

You can obtain a value that contains all of the original modifier flags by calling the

getModifiers() method. It is shown here:

int getModifiers()

You can obtain the extended modifiers by called getModifiersEx(), which is shown here.

int getModifiersEx()

The ItemEvent Class:

An ItemEvent is generated when a check box or a list item is clicked or when a checkable menu

item is selected or deselected. There are two types of item events, which are identified by the

following integer constants:

DESELECTED The user deselected an item.

SELECTED The user selected an item.

In addition, ItemEvent defines one integer constant, ITEM_STATE_CHANGED, that

signifies a change of state.

ItemEvent has this constructor:

ItemEvent(ItemSelectable src, int type, Object entry, int state)

Here, src is a reference to the component that generated this event. For example, this might be a

list or choice element. The type of the event is specified by type. The specific item that generated

the item event is passed in entry. The current state of that item is in state.

The getItem() method can be used to obtain a reference to the item that generated an event. Its

signature is shown here:

Object getItem()

The getItemSelectable() method can be used to obtain a reference to the ItemSelectable object

that generated an event. Its general form is shown here:

ItemSelectable getItemSelectable()

Lists and choices are examples of user interface elements that implement the ItemSelectable

interface.

The getStateChange() method returns the state change (i.e., SELECTED or DESELECTED)

for the event. It is shown here:

int getStateChange()

The KeyEvent Class

A KeyEvent is generated when keyboard input occurs. There are three types of key events, which

are identified by these integer constants: KEY_PRESSED, KEY_RELEASED, and

KEY_TYPED. The first two events are generated when any key is pressed or released. The last

event occurs only when a character is generated. Remember, not all key presses result in

characters. For example, pressing the SHIFT key does not generate a character.

There are many other integer constants that are defined by KeyEvent. For example, VK_0

through VK_9 and VK_A through VK_Z define the ASCII equivalents of the numbers and letters.

Here are some others:

VK_ENTER VK_ESCAPE VK_CANCEL VK_UP

VK_DOWN VK_LEFT VK_RIGHT VK_PAGE_DOWN

VK_PAGE_UP VK_SHIFT VK_ALT VK_CONTROL

The VK constants specify virtual key codes and are independent of any modifiers, such as

control, shift, or alt.

KeyEvent is a subclass of InputEvent. Here are two of its constructors:

KeyEvent(Component src, int type, long when, int modifiers, int code)

KeyEvent(Component src, int type, long when, int modifiers, int code, char ch)

Here, src is a reference to the component that generated the event. The type of the event is

specified by type. The system time at which the key was pressed is passed in when. The modifiers

argument indicates which modifiers were pressed when this key event occurred.

CMRTC

II B.tech I Semester(IT) 149 Object Oriented Programming

The virtual key code, such as VK_UP, VK_A, and so forth, is passed in code. The character

equivalent (if one exists) is passed in ch. If no valid character exists, then ch contains

CHAR_UNDEFINED. For KEY_TYPED events, code will contain VK_UNDEFINED. The

KeyEvent class defines several methods, but the most commonly used ones are getKeyChar(),

which returns the character that was entered, and getKeyCode(), which returns the key code.

Their general forms are shown here:

char getKeyChar()

int getKeyCode()

If no valid character is available, then getKeyChar() returns CHAR_UNDEFINED.

When a KEY_TYPED event occurs, getKeyCode() returns VK_UNDEFINED.

The MouseEvent Class:

There are eight types of mouse events. The MouseEvent class defines the following

integer constants that can be used to identify them:

MOUSE_CLICKED The user clicked the mouse.

MOUSE_DRAGGED The user dragged the mouse.

MOUSE_ENTERED The mouse entered a component.

MOUSE_EXITED The mouse exited from a component.

MOUSE_MOVED The mouse moved.

MOUSE_PRESSED The mouse was pressed.

MOUSE_RELEASED The mouse was released.

MOUSE_WHEEL The mouse wheel was moved (Java 2, v1.4).

MouseEvent is a subclass of InputEvent. Here is one of its constructors.

MouseEvent(Component src, int type, long when, int modifiers,

int x, int y, int clicks, boolean triggersPopup)

Here, src is a reference to the component that generated the event. The type of the event

is specified by type. The system time at which the mouse event occurred is passed in when. The

modifiers argument indicates which modifiers were pressed when a mouse event occurred. The

coordinates of the mouse are passed in x and y. The click count is passed in clicks. The

triggersPopup flag indicates if this event causes a pop-up menu to appear on this platform. Java

2, version 1.4 adds a second constructor which also allows the button that caused the event to be

specified.

The most commonly used methods in this class are getX() and getY(). These return the X and Y

coordinates of the mouse when the event occurred. Their forms are shown here:

int getX()

int getY()

Alternatively, you can use the getPoint() method to obtain the coordinates of the mouse. It is

shown here:

Point getPoint()

It returns a Point object that contains the X, Y coordinates in its integer members: x and y. The

translatePoint() method changes the location of the event. Its form is shown here:

void translatePoint(int x, int y)

Here, the arguments x and y are added to the coordinates of the event.

The getClickCount() method obtains the number of mouse clicks for this event. Its signature is

shown here:

int getClickCount()

The isPopupTrigger() method tests if this event causes a pop-up menu to appear on this

platform. Its form is shown here:

boolean isPopupTrigger()

Java 2, version 1.4 added the getButton() method, shown here.

int getButton()

CMRTC

II B.tech I Semester(IT) 150 Object Oriented Programming

It returns a value that represents the button that caused the event. The return value will be one of

these constants defined by MouseEvent.

NOBUTTON BUTTON1 BUTTON2 BUTTON3

The NOBUTTON value indicates that no button was pressed or released.

The MouseWheelEvent Class:

The MouseWheelEvent class encapsulates a mouse wheel event. It is a subclass of MouseEvent

and was added by Java 2, version 1.4. If a mouse has a wheel, it is located between the left

and right buttons. Mouse wheels are used for scrolling. MouseWheelEvent defines these two

integer constants.

WHEEL_BLOCK_SCROLL A page-up or page-down scroll event occurred.

WHEEL_UNIT_SCROLL A line-up or line-down scroll event occurred.

MouseWheelEvent defines the following constructor.

MouseWheelEvent(Component src, int type, long when, int modifiers,

int x, int y, int clicks, boolean triggersPopup,

int scrollHow, int amount, int count)

Here, src is a reference to the object that generated the event. The type of the event is specified

by type. The system time at which the mouse event occurred is passed in when. The modifiers

argument indicates which modifiers were pressed when the event occurred. The coordinates of

the mouse are passed in x and y. The number of clicks the wheel has rotated is passed in clicks.

The triggersPopup flag indicates if this event causes a pop-up menu to appear on this platform.

The scrollHow value must be either WHEEL_UNIT_SCROLL or

WHEEL_BLOCK_SCROLL. The number of units to scroll is passed in amount. The count

parameter indicates the number of rotational units that the wheel moved.

MouseWheelEvent defines methods that give you access to the wheel event. To obtain the

number of rotational units, call getWheelRotation(), shown here.

int getWheelRotation()

It returns the number of rotational units. If the value is positive, the wheel moved

counterclockwise. If the value is negative, the wheel moved clockwise.

To obtain the type of scroll, call getScrollType(), shown next.

int getScrollType()

It returns either WHEEL_UNIT_SCROLL or WHEEL_BLOCK_SCROLL.

If the scroll type is WHEEL_UNIT_SCROLL, you can obtain the number of units to scroll by

calling getScrollAmount(). It is shown here.

int getScrollAmount()

The TextEvent Class

Instances of this class describe text events. These are generated by text fields and text areas when

characters are entered by a user or program. TextEvent defines the integer constant

TEXT_VALUE_CHANGED.

The one constructor for this class is shown here:

TextEvent(Object src, int type)

Here, src is a reference to the object that generated this event. The type of the event is specified

by type.

The TextEvent object does not include the characters currently in the text component that

generated the event. Instead, your program must use other methods associated with the text

component to retrieve that information. This operation differs from other event objects discussed

in this section. For this reason, no methods are discussed here for the TextEvent class. Think of

a text event notification as a signal to a listener that it should retrieve information from a specific

text component.

The WindowEvent Class:

CMRTC

II B.tech I Semester(IT) 151 Object Oriented Programming

There are ten types of window events. The WindowEvent class defines integer constants that

can be used to identify them. The constants and their meanings are shown here:

WINDOW_ACTIVATED The window was activated.

WINDOW_CLOSED The window has been closed.

WINDOW_CLOSING The user requested that the window

be closed.

WINDOW_DEACTIVATED The window was deactivated.

WINDOW_DEICONIFIED The window was deiconified.

WINDOW_GAINED_FOCUS The window gained input focus.

WINDOW_ICONIFIED The window was iconified.

WINDOW_LOST_FOCUS The window lost input focus.

WINDOW_OPENED The window was opened.

WINDOW_STATE_CHANGED The state of the window changed.

(Added by Java 2, version 1.4.)

WindowEvent is a subclass of ComponentEvent. It defines several constructors. The first is

WindowEvent(Window src, int type)

Here, src is a reference to the object that generated this event. The type of the event is type.

Java 2, version 1.4 adds the next three constructors.

WindowEvent(Window src, int type, Window other)

WindowEvent(Window src, int type, int fromState, int toState)

WindowEvent(Window src, int type, Window other, int fromState, int toState)

Here, other specifies the opposite window when a focus event occurs. The fromState

specifies the prior state of the window and toState specifies the new state that the window will

have when a window state change occurs. The most commonly used method in this class is

getWindow(). It returns the Window object that generated the event. Its general form is shown

here:

Window getWindow()

Java 2, version 1.4, adds methods that return the opposite window (when a focus event has

occurred), the previous window state, and the current window state. These methods are shown

here:

Window getOppositeWindow()

int getOldState()

int getNewState()

Sources of Events

Event Source Description:

Event Source Examples:

Button Generates action events when the button is pressed.

Checkbox Generates item events when the check box is selected or deselected.

Choice Generates item events when the choice is changed.

List Generates action events when an item is double-clicked; generates

item events when an item is selected or deselected.

Menu Item Generates action events when a menu item is selected; generates

item events when a checkable menu item is selected or deselected.

Scrollbar Generates adjustment events when the scroll bar is manipulated.

Text components Generates text events when the user enters a character.

Window Generates window events when a window is activated, closed,

deactivated, deiconified, iconified, opened, or quit.

CMRTC

II B.tech I Semester(IT) 152 Object Oriented Programming

Event Listener Interfaces:

the delegation event model has two parts: sources and listeners. Listeners are created by

implementing one or more of the interfaces defined by the java.awt.event package. When an

event occurs, the event source invokes the appropriate method defined by the listener and provides

an event object as its argument.

Interface Description:

ActionListener Defines one method to receive action events.

AdjustmentListener Defines one method to receive adjustment events.

ComponentListener Defines four methods to recognize when a component is hidden,

moved, resized, or shown.

ContainerListener Defines two methods to recognize when a component is added to or

removed from a container.

FocusListener Defines two methods to recognize when a component gains or loses

keyboard focus.

ItemListener Defines one method to recognize when the state of an item changes.

KeyListener Defines three methods to recognize when a key is pressed,released, or

typed.

MouseListener Defines five methods to recognize when the mouse is clicked, enters a

component, exits a component, is pressed, or is released.

MouseMotionListener Defines two methods to recognize when the mouse is dragged or

moved.

MouseWheelListener Defines one method to recognize when the mouse wheel is moved.

TextListener Defines one method to recognize when a text value changes.

WindowFocusListener Defines two methods to recognize when a window gains or loses

input focus.

WindowListener Defines seven methods to recognize when a window is activated,

closed, deactivated, deiconified, iconified, opened,or quit.

1) The ActionListener Interface:

This interface defines the actionPerformed() method that is invoked when an action event

occurs. Its general form is shown here:

void actionPerformed(ActionEvent ae)

2) The AdjustmentListener Interface:

This interface defines the adjustmentValueChanged() method that is invoked when an

adjustment event occurs. Its general form is shown here:

void adjustmentValueChanged(AdjustmentEvent ae)

3) The ComponentListener Interface:

This interface defines four methods that are invoked when a component is resized, moved,

shown, or hidden. Their general forms are shown here:

void componentResized(ComponentEvent ce)

void componentMoved(ComponentEvent ce)

void componentShown(ComponentEvent ce)

void componentHidden(ComponentEvent ce)

The AWT processes the resize and move events. The componentResized() and

componentMoved() methods are provided for notification purposes only.

4) The ContainerListener Interface:

This interface contains two methods. When a component is added to a container,

componentAdded() is invoked. When a component is removed from a container,

componentRemoved() is invoked. Their general forms are shown here:

void componentAdded(ContainerEvent ce)

CMRTC

II B.tech I Semester(IT) 153 Object Oriented Programming

void componentRemoved(ContainerEvent ce)

5) The FocusListener Interface:

This interface defines two methods. When a component obtains keyboard focus,focusGained()

is invoked. When a component loses keyboard focus, focusLost() is called. Their general forms

are shown here:

void focusGained(FocusEvent fe)

void focusLost(FocusEvent fe)

6) The ItemListener Interface:

This interface defines the itemStateChanged() method that is invoked when the state of an

item changes. Its general form is shown here:

void itemStateChanged(ItemEvent ie)

7) The KeyListener Interface:

This interface defines three methods. The keyPressed() and keyReleased() methods are invoked

when a key is pressed and released, respectively. The keyTyped() method is invoked when a

character has been entered.

For example, if a user presses and releases the A key, three events are generated in sequence: key

pressed, typed, and released. If a user presses and releases the HOME key, two key events are

generated in sequence: key pressed and released.

The general forms of these methods are shown here:

void keyPressed(KeyEvent ke)

void keyReleased(KeyEvent ke)

void keyTyped(KeyEvent ke)

8) The MouseListener Interface:

This interface defines five methods. If the mouse is pressed and released at the same point,

mouseClicked() is invoked. When the mouse enters a component, the mouseEntered() method

is called. When it leaves, mouseExited() is called. The mousePressed() and mouseReleased()

methods are invoked when the mouse is pressed and released, respectively.

The general forms of these methods are shown here:

void mouseClicked(MouseEvent me)

void mouseEntered(MouseEvent me)

void mouseExited(MouseEvent me)

void mousePressed(MouseEvent me)

void mouseReleased(MouseEvent me)

9) The MouseMotionListener Interface:

This interface defines two methods. The mouseDragged() method is called multiple times as the

mouse is dragged. The mouseMoved() method is called multiple times as the mouse is moved.

Their general forms are shown here:

void mouseDragged(MouseEvent me)

void mouseMoved(MouseEvent me)

10) The MouseWheelListener Interface:

This interface defines the mouseWheelMoved() method that is invoked when the mouse wheel

is moved. Its general form is shown here.

void mouseWheelMoved(MouseWheelEvent mwe)

MouseWheelListener was added by Java 2, version 1.4.

11) The TextListener Interface:

This interface defines the textChanged() method that is invoked when a change occurs in a text

area or text field. Its general form is shown here:

void textChanged(TextEvent te)

12) The WindowFocusListener Interface:

This interface defines two methods: windowGainedFocus() and windowLostFocus(). These

are called when a window gains or losses input focus. Their general forms are shown here.

CMRTC

II B.tech I Semester(IT) 154 Object Oriented Programming

void windowGainedFocus(WindowEvent we)

void windowLostFocus(WindowEvent we)

WindowFocusListener was added by Java 2, version 1.4.

13) The WindowListener Interface:

This interface defines seven methods. The windowActivated() and windowDeactivated()

methods are invoked when a window is activated or deactivated, respectively. If a window is

iconified, the windowIconified() method is called. When a window is deiconified, the

windowDeiconified() method is called. When a window is opened or closed, the

windowOpened() or windowClosed() methods are called, respectively. The windowClosing(

) method is called when a window is being closed. The general forms of these methods are

void windowActivated(WindowEvent we)

void windowClosed(WindowEvent we)

void windowClosing(WindowEvent we)

void windowDeactivated(WindowEvent we)

void windowDeiconified(WindowEvent we)

void windowIconified(WindowEvent we)

void windowOpened(WindowEvent we)

Using the Delegation Event Model:

Applet programming using the delegation event model is actually quite easy. Just follow these

two steps:

1. Implement the appropriate interface in the listener so that it will receive the

type of event desired.

2. Implement code to register and unregister (if necessary) the listener as a recipient

for the event notifications.

Remember that a source may generate several types of events. Each event must be registered

separately. Also, an object may register to receive several types of events, but it must implement

all of the interfaces that are required to receive these events.

To see how the delegation model works in practice, we will look at examples that handle the two

most commonly used event generators: the mouse and keyboard.

Handling Mouse Events:

To handle mouse events, you must implement the MouseListener and the

MouseMotionListener interfaces. (You may also want to implement MouseWheelListener, but

we won’t be doing so, here.) The following applet demonstrates the process. It displays the current

coordinates of the mouse in the applet’s status window. Each time a button is pressed, the word

―Down‖ is displayed at the location of the mouse pointer. Each time the button is released,

the word ―Up‖ is shown. If a button is clicked, the message ―Mouse clicked‖ is displayed

in the upper-left corner of the applet display area. As the mouse enters or exits the applet window,

a message is displayed in the upper-left corner of the applet display area. When dragging the

mouse, a * is shown, which tracks with the mouse pointer as it is dragged. Notice that the two

variables, mouseX and mouseY, store the location of the mouse when a mouse pressed, released,

or dragged event occurs. These coordinates are then used by paint() to display output at the

point of these occurrences.

// Demonstrate the mouse event handlers.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

CMRTC

II B.tech I Semester(IT) 155 Object Oriented Programming

<applet code="MouseEvents" width=300 height=100>

</applet>

*/

public class MouseEvents extends Applet implements MouseListener, MouseMotionListener {

String msg = "";

int mouseX = 0, mouseY = 0; // coordinates of mouse

public void init() {

addMouseListener(this);

addMouseMotionListener(this);

}

// Handle mouse clicked.

public void mouseClicked(MouseEvent me) {

// save coordinates

mouseX = 0;

mouseY = 10;

msg = "Mouse clicked.";

repaint();

}

// Handle mouse entered.

public void mouseEntered(MouseEvent me) {

// save coordinates

mouseX = 0;

mouseY = 10;

msg = "Mouse entered.";

repaint();

}

// Handle mouse exited.

public void mouseExited(MouseEvent me) {

// save coordinates

mouseX = 0;

mouseY = 10;

msg = "Mouse exited.";

repaint();

}

// Handle button pressed.

public void mousePressed(MouseEvent me) {

// save coordinates

mouseX = me.getX();

mouseY = me.getY();

msg = "Down";

repaint();

}

// Handle button released.

public void mouseReleased(MouseEvent me) {

// save coordinates

mouseX = me.getX();

mouseY = me.getY();

msg = "Up";

repaint();

}

// Handle mouse dragged.

CMRTC

II B.tech I Semester(IT) 156 Object Oriented Programming

public void mouseDragged(MouseEvent me) {

// save coordinates

mouseX = me.getX();

mouseY = me.getY();

msg = "*";

showStatus("Dragging mouse at " + mouseX + ", " + mouseY);

repaint();

}

// Handle mouse moved.

public void mouseMoved(MouseEvent me) {

// show status

showStatus("Moving mouse at " + me.getX() + ", " + me.getY());

}

// Display msg in applet window at current X,Y location.

public void paint(Graphics g) {

g.drawString(msg, mouseX, mouseY);

}

}

Sample output from this program is shown here:

Let’s look closely at this example. The MouseEvents class extends Applet and implements both

the MouseListener and MouseMotionListener interfaces. These two interfaces contain methods

that receive and process the various types of mouse events. Notice that the applet is both the source

and the listener for these events.

This works because Component, which supplies the addMouseListener() and

addMouseMotionListener() methods, is a superclass of Applet. Being both the source and the

listener for events is a common situation for applets. Inside init(), the applet registers itself as a

listener for mouse events. This is done by using addMouseListener() and

addMouseMotionListener(), which, as mentioned, are members of Component. They are

shown here:

void addMouseListener(MouseListener ml)

void addMouseMotionListener(MouseMotionListener mml)

Here, ml is a reference to the object receiving mouse events, and mml is a reference to the

object receiving mouse motion events. In this program, the same object is used for both.

The applet then implements all of the methods defined by the MouseListener and

MouseMotionListener interfaces. These are the event handlers for the various mouse events.

Each method handles its event and then returns.

Handling Keyboard Events:

CMRTC

II B.tech I Semester(IT) 157 Object Oriented Programming

To handle keyboard events, you use the same general architecture as that shown in the mouse

event example in the preceding section. The difference, of course, is that you will be implementing

the KeyListener interface. Before looking at an example, it is useful to review how key events

are generated.

When a key is pressed, a KEY_PRESSED event is generated. This results in a call to the

keyPressed() event handler. When the key is released, a KEY_RELEASED event is generated

and the keyReleased() handler is executed. If a character is generated by the keystroke, then a

KEY_TYPED event is sent and the keyTyped() handler is invoked. Thus, each time the user

presses a key, at least two and often three events are generated. If all you care about are actual

characters, then you can ignore the information passed by the key press and release events.

However, if your program needs to handle special keys, such as the arrow or function keys, then

it must watch for them through the keyPressed() handler.

There is one other requirement that your program must meet before it can process keyboard

events: it must request input focus. To do this, call requestFocus(), which is defined by

Component. If you don’t, then your program will not receive any keyboard events.

The following program demonstrates keyboard input. It echoes keystrokes to the

applet window and shows the pressed/released status of each key in the status window.

// Demonstrate the key event handlers.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="SimpleKey" width=300 height=100>

</applet>

*/

public class SimpleKey extends Applet implements KeyListener

{

String msg = "";

int X = 10, Y = 20; // output coordinates

public void init() {

addKeyListener(this);

requestFocus(); // request input focus

}

public void keyPressed(KeyEvent ke) {

showStatus("Key Down");

}

public void keyReleased(KeyEvent ke) {

showStatus("Key Up");

}

public void keyTyped(KeyEvent ke) {

msg += ke.getKeyChar();

repaint();

}

// Display keystrokes.

public void paint(Graphics g) {

g.drawString(msg, X, Y);

}

}

Sample output is shown here:

CMRTC

II B.tech I Semester(IT) 158 Object Oriented Programming

If you want to handle the special keys, such as the arrow or function keys, you need to respond

to them within the keyPressed() handler. They are not available through keyTyped(). To identify

the keys, you use their virtual key codes. For example, the next applet outputs the name of a few

of the special keys:

// Demonstrate some virtual key codes.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="KeyEvents" width=300 height=100>

</applet>

*/

public class KeyEvents extends Applet

implements KeyListener {

String msg = "";

int X = 10, Y = 20; // output coordinates

public void init() {

addKeyListener(this);

requestFocus(); // request input focus

}

public void keyPressed(KeyEvent ke) {

showStatus("Key Down");

int key = ke.getKeyCode();

switch(key) {

case KeyEvent.VK_F1:

msg += "<F1>";

break;

case KeyEvent.VK_F2:

msg += "<F2>";

break;

case KeyEvent.VK_F3:

msg += "<F3>";

break;

case KeyEvent.VK_PAGE_DOWN:

msg += "<PgDn>";

break;

case KeyEvent.VK_PAGE_UP:

msg += "<PgUp>";

break;

case KeyEvent.VK_LEFT:

msg += "<Left Arrow>";

break;

CMRTC

II B.tech I Semester(IT) 159 Object Oriented Programming

case KeyEvent.VK_RIGHT:

msg += "<Right Arrow>";

break;

}

repaint();

}

public void keyReleased(KeyEvent ke) {

showStatus("Key Up");

}

public void keyTyped(KeyEvent ke) {

msg += ke.getKeyChar();

repaint();

}

// Display keystrokes.

public void paint(Graphics g) {

g.drawString(msg, X, Y);

}

}

Sample output is shown here:

The procedures shown in the preceding keyboard and mouse event examples can be generalized

to any type of event handling, including those events generated by controls. In later chapters, you

will see many examples that handle other types of events, but they will all follow the same basic

structure as the programs just described.

Adapter Classes:

Java provides a special feature, called an adapter class, that can simplify the creation of event

handlers in certain situations. An adapter class provides an empty implementation of all methods

in an event listener interface. Adapter classes are useful when you want to receive and process

only some of the events that are handled by a particular event listener interface. You can define

a new class to act as an event listener by extending one of the adapter classes and implementing

only those events in which you are interested. For example, the MouseMotionAdapter class has

two methods, mouseDragged() and mouseMoved(). The signatures of these empty methods are

exactly as defined in the MouseMotionListener interface. If you were interested in only mouse

drag events, then you could simply extend MouseMotionAdapter and implement

mouseDragged(). The empty implementation of mouseMoved() would handle the mouse

motion events for you.

The following example demonstrates an adapter. It displays a message in the status bar of an

applet viewer or browser when the mouse is clicked or dragged. However, all other mouse events

are silently ignored. The program has three classes. AdapterDemo extends Applet. Its init()

method creates an instance of MyMouseAdapter and registers that object to receive notifications

of mouse events. It also creates an instance of MyMouseMotionAdapter and

CMRTC

II B.tech I Semester(IT) 160 Object Oriented Programming

registers that object to receive notifications of mouse motion events. Both of the constructors take

a reference to the applet as an argument. MyMouseAdapter implements the mouseClicked()

method. The other mouse events are silently ignored by code inherited from the MouseAdapter

class. MyMouseMotionAdapter implements the mouseDragged() method. The other mouse

motion event is silently ignored by code inherited from the MouseMotionAdapter class.

Note that both of our event listener classes save a reference to the applet. This information is

provided as an argument to their constructors and is used later to invoke the

showStatus() method.

// Demonstrate an adapter.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="AdapterDemo" width=300 height=100>

</applet>

*/

public class AdapterDemo extends Applet {

public void init() {

addMouseListener(new MyMouseAdapter(this));

addMouseMotionListener(new MyMouseMotionAdapter(this));

}

}

class MyMouseAdapter extends MouseAdapter {

AdapterDemo adapterDemo;

public MyMouseAdapter(AdapterDemo adapterDemo) {

this.adapterDemo = adapterDemo;

}

// Handle mouse clicked.

public void mouseClicked(MouseEvent me) {

adapterDemo.showStatus("Mouse clicked");

}

}

class MyMouseMotionAdapter extends MouseMotionAdapter {

AdapterDemo adapterDemo;

public MyMouseMotionAdapter(AdapterDemo adapterDemo) {

this.adapterDemo = adapterDemo;

}

// Handle mouse dragged.

public void mouseDragged(MouseEvent me) {

adapterDemo.showStatus("Mouse dragged");

}

}

As you can see by looking at the program, not having to implement all of the methods defined by

the MouseMotionListener and MouseListener interfaces saves you a considerable amount of

effort and prevents your code from becoming cluttered with empty methods. As an exercise, you

might want to try rewriting one of the keyboard input examples shown earlier so that it uses a

KeyAdapter.

Inner Classes:

CMRTC

II B.tech I Semester(IT) 161 Object Oriented Programming

the basics of inner classes were explained. Here you will see why they are important. Recall that

an inner class is a class defined within other class, or even within an expression. This section

illustrates how inner classes can be used to simplify the code when using event adapter classes.

To understand the benefit provided by inner classes, consider the applet shown in the following

listing. It does not use an inner class. Its goal is to display the string ―Mouse Pressed‖ in the

status bar of the applet viewer or browser when the mouse is pressed. There are two top-level

classes in this program. MousePressedDemo extends Applet, and MyMouseAdapter extends

MouseAdapter. The init() method of MousePressedDemo instantiates MyMouseAdapter

and provides this object as an argument to the addMouseListener() method.

Notice that a reference to the applet is supplied as an argument to the MyMouseAdapter

constructor. This reference is stored in an instance variable for later use by the mousePressed()

method. When the mouse is pressed, it invokes the showStatus() method of the applet through

the stored applet reference. In other words, showStatus() is invoked relative to the applet

reference stored by MyMouseAdapter.

// This applet does NOT use an inner class.

import java.applet.*;

import java.awt.event.*;

/*

<applet code="MousePressedDemo" width=200 height=100>

</applet>

*/

public class MousePressedDemo extends Applet {

public void init() {

addMouseListener(new MyMouseAdapter(this));

}

}

class MyMouseAdapter extends MouseAdapter {

MousePressedDemo mousePressedDemo;

public MyMouseAdapter(MousePressedDemo mousePressedDemo) {

this.mousePressedDemo = mousePressedDemo;

}

public void mousePressed(MouseEvent me) {

mousePressedDemo.showStatus("Mouse Pressed.");

}

}

The following listing shows how the preceding program can be improved by using an inner class.

Here, InnerClassDemo is a top-level class that extends Applet. MyMouseAdapter is an inner

class that extends MouseAdapter. Because MyMouseAdapter is defined within the scope of

InnerClassDemo, it has access to all of the variables and methods within the scope of that class.

Therefore, the mousePressed() method can call the showStatus() method directly. It no longer

needs to do this via a stored reference to the applet. Thus, it is no longer necessary to pass

MyMouseAdapter() a reference to the invoking object.

// Inner class demo.

import java.applet.*;

import java.awt.event.*;

/*

<applet code="InnerClassDemo" width=200 height=100>

</applet>

*/

public class InnerClassDemo extends Applet {

CMRTC

II B.tech I Semester(IT) 162 Object Oriented Programming

public void init() {

addMouseListener(new MyMouseAdapter());

}

class MyMouseAdapter extends MouseAdapter {

public void mousePressed(MouseEvent me) {

showStatus("Mouse Pressed");

}

}

}

Anonymous Inner Classes:

An anonymous inner class is one that is not assigned a name. Consider the applet shown in the

following listing. As before, its goal is to display the string ―Mouse Pressed‖ in the status bar of

the applet viewer or browser when the mouse is pressed.

// Anonymous inner class demo.

import java.applet.*;

import java.awt.event.*;

/*

<applet code="AnonymousInnerClassDemo" width=200 height=100>

</applet>

*/

public class AnonymousInnerClassDemo extends Applet {

public void init() {

addMouseListener(new MouseAdapter() {

public void mousePressed(MouseEvent me) {

showStatus("Mouse Pressed");

}

});

}

}

There is one top-level class in this program: AnonymousInnerClassDemo. The init() method

calls the addMouseListener() method. Its argument is an expression that defines and instantiates

an anonymous inner class. Let’s analyze this expression carefully. The syntax new

MouseAdapter() { ... } indicates to the compiler that the code between the braces defines an

anonymous inner class. Furthermore, that class extends MouseAdapter. This new class is not

named, but it is automatically instantiated when this expression is executed.

Because this anonymous inner class is defined within the scope of AnonymousInnerClassDemo,

it has access to all of the variables and methods within the scope of that class. Therefore, it can

call the showStatus() method directly.

JAVA SWING TUTORIAL

Java Swing tutorial is a part of Java Foundation Classes (JFC) that is USED TO CREATE

WINDOW-BASED APPLICATIONS. It is built on the top of AWT (Abstract Windowing Toolkit)

API and entirely written in java.

Unlike AWT, Java Swing provides platform-independent and lightweight components.

CMRTC

II B.tech I Semester(IT) 163 Object Oriented Programming

The javax.swing package provides classes for java swing API such as JButton, JTextField,

JTextArea, JRadioButton, JCheckbox, JMenu, JColorChooser etc.

DIFFERENCE BETWEEN AWT AND SWING

There are many differences between java awt and swing that are given below.

No. Java AWT Java Swing

1) AWT components are platform-dependent.
Java swing components are platform-

independent.

2) AWT components are heavyweight. Swing components are lightweight.

3) AWT doesn't support pluggable look and feel.
Swing supports pluggable look and

feel.

4) AWT provides less components than Swing.

Swing provides more powerful
components such as tables, lists,
scrollpanes, colorchooser, tabbedpane
etc.

AWT doesn't follows MVC(Model View Controller)
where model represents data, view represents

5) presentation and controller acts as an interface
between model and view.

Swing follows MVC.

WHAT IS JFC

The Java Foundation Classes (JFC) are a set of GUI components which simplify the

development of desktop applications.

Do You Know

 How to create runnable jar file in java?
 How to display image on a button in swing?
 How to change the component color by choosing a color from ColorChooser ?
 How to display the digital watch in swing tutorial ?
 How to create a notepad in swing?
 How to create puzzle game and pic puzzle game in swing ?
 How to create tic tac toe game in swing ?

HIERARCHY OF JAVA SWING CLASSES

The hierarchy of java swing API is given below.

CMRTC

II B.tech I Semester(IT) 164 Object Oriented Programming

COMMONLY USED METHODS OF COMPONENT CLASS

The methods of Component class are widely used in java swing that are given below.

Method Description

public void add(Component c) add a component on another component.

public void setSize(int width,int height) sets size of the component.

public void setLayout(LayoutManager m) sets the layout manager for the component.

public void setVisible(boolean b) sets the visibility of the component. It is by default false.

JAVA SWING EXAMPLES

There are two ways to create a frame:

 By creating the object of Frame class (association)
 By extending Frame class (inheritance)

We can write the code of swing inside the main(), constructor or any other method.

SIMPLE JAVA SWING EXAMPLE

Let's see a simple swing example where we are creating one button and adding it on the JFrame

object inside the main() method.

File: FirstSwingExample.java

1. import javax.swing.*;
2. public class FirstSwingExample {
3. public static void main(String[] args) {
4. JFrame f=new JFrame();//creating instance of JFrame
5.
6. JButton b=new JButton("click");//creating instance of JButton
7. b.setBounds(130,100,100, 40);//x axis, y axis, width, height
8.
9. f.add(b);//adding button in JFrame
10.
11. f.setSize(400,500);//400 width and 500 height
12. f.setLayout(null);//using no layout managers
13. f.setVisible(true);//making the frame visible
14. }
15. }

CMRTC

II B.tech I Semester(IT) 165 Object Oriented Programming

EXAMPLE OF SWING BY ASSOCIATION INSIDE CONSTRUCTOR

We can also write all the codes of creating JFrame, JButton and method call inside the java

constructor.

File: Simple.java

1. import javax.swing.*;
2. public class Simple {
3. JFrame f;
4. Simple(){
5. f=new JFrame();//creating instance of JFrame
6.
7. JButton b=new JButton("click");//creating instance of JButton
8. b.setBounds(130,100,100, 40);
9.
10. f.add(b);//adding button in JFrame
11.
12. f.setSize(400,500);//400 width and 500 height
13. f.setLayout(null);//using no layout managers
14. f.setVisible(true);//making the frame visible
15. }
16.
17. public static void main(String[] args) {
18. new Simple();
19. }
20. }

The setBounds(int xaxis, int yaxis, int width, int height)is used in the above example that sets

the position of the button.

SIMPLE EXAMPLE OF SWING BY INHERITANCE

We can also inherit the JFrame class, so there is no need to create the instance of JFrame class

explicitly.

File: Simple2.java

1. import javax.swing.*;
2. public class Simple2 extends JFrame{//inheriting JFrame
3. JFrame f;
4. Simple2(){
5. JButton b=new JButton("click");//create button
6. b.setBounds(130,100,100, 40);
7.
8. add(b);//adding button on frame

CMRTC

II B.tech I Semester(IT) 166 Object Oriented Programming

9. setSize(400,500);
10. setLayout(null);
11. setVisible(true);
12. }
13. public static void main(String[] args) {
14. new Simple2();
15. }}

Handling Events in a Frame Window:

Since Frame is a subclass of Component, it inherits all the capabilities defined by omponent.

This means that you can use and manage a frame window that you create just like you manage

your applet’s main window. For example, you can override paint() to display output, call

repaint() when you need to restore the window, and override all event handlers. Whenever an

event occurs in a window, the event handlers defined by that window will be called. Each window

handles its own events. For example, the following program creates a window that responds to

mouse events. The main applet window also responds to mouse events. When you experiment

with this program, you will see that mouse events are sent to the window in which the event

occurs.

// Handle mouse events in both child and applet windows.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="WindowEvents" width=300 height=50>

</applet>

*/

// Create a subclass of Frame.

class SampleFrame extends Frame

implements MouseListener, MouseMotionListener {

String msg = "";

int mouseX=10, mouseY=40;

int movX=0, movY=0;

SampleFrame(String title) {

super(title);

// register this object to receive its own mouse events

addMouseListener(this);

addMouseMotionListener(this);

// create an object to handle window events

MyWindowAdapter adapter = new MyWindowAdapter(this);

// register it to receive those events

addWindowListener(adapter);

}

// Handle mouse clicked.

public void mouseClicked(MouseEvent me) {

}

// Handle mouse entered.

public void mouseEntered(MouseEvent evtObj) {

// save coordinates

CMREC Redefining the Quality Education

}

II B.tech II Semester(CSE) 167 Object Oriented Programming

mouseX = 10;

mouseY = 54;

msg = "Mouse just entered child.";

repaint();

}

// Handle mouse exited.

public void mouseExited(MouseEvent evtObj) {

// save coordinates

mouseX = 10;

mouseY = 54;

msg = "Mouse just left child window.";

repaint();

}

// Handle mouse pressed.

public void mousePressed(MouseEvent me) {

// save coordinates

mouseX = me.getX();

mouseY = me.getY();

msg = "Down";

repaint();

}

// Handle mouse released.

public void mouseReleased(MouseEvent me) {

// save coordinates

mouseX = me.getX();

mouseY = me.getY();

msg = "Up";

repaint();

}

// Handle mouse dragged.

public void mouseDragged(MouseEvent me) {

// save coordinates

mouseX = me.getX();

mouseY = me.getY();

movX = me.getX();

movY = me.getY();

msg = "*";

repaint();

}

// Handle mouse moved.

public void mouseMoved(MouseEvent me) {

// save coordinates

movX = me.getX();

movY = me.getY();

repaint(0, 0, 100, 60);

}

public void paint(Graphics g) {

g.drawString(msg, mouseX, mouseY);

g.drawString("Mouse at " + movX + ", " + movY, 10, 40);

}

CMREC Redefining the Quality Education

}

II B.tech II Semester(CSE) 168 Object Oriented Programming

class MyWindowAdapter extends WindowAdapter {

SampleFrame sampleFrame;

public MyWindowAdapter(SampleFrame sampleFrame) {

this.sampleFrame = sampleFrame;

}

public void windowClosing(WindowEvent we) {

sampleFrame.setVisible(false);

}

}

// Applet window.

public class WindowEvents extends Applet

implements MouseListener, MouseMotionListener {

SampleFrame f;

String msg = "";

int mouseX=0, mouseY=10;

int movX=0, movY=0;

// Create a frame window.

public void init() {

f = new SampleFrame("Handle Mouse Events");

f.setSize(300, 200);

f.setVisible(true);

// register this object to receive its own mouse events

addMouseListener(this);

addMouseMotionListener(this);

}

// Remove frame window when stopping applet.

public void stop() {

f.setVisible(false);

}

// Show frame window when starting applet.

public void start() {

f.setVisible(true);

}

// Handle mouse clicked.

public void mouseClicked(MouseEvent me) {

}

// Handle mouse entered.

public void mouseEntered(MouseEvent me) {

// save coordinates

mouseX = 0;

mouseY = 24;

msg = "Mouse just entered applet window.";

repaint();

// Handle mouse exited.

public void mouseExited(MouseEvent me) {

// save coordinates

mouseX = 0;

mouseY = 24;

msg = "Mouse just left applet window.";

repaint();

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 169 Object Oriented Programming

// Handle button pressed.

public void mousePressed(MouseEvent me) {

// save coordinates

mouseX = me.getX();

mouseY = me.getY();

msg = "Down";

repaint();

}

// Handle button released.

public void mouseReleased(MouseEvent me) {

// save coordinates

mouseX = me.getX();

mouseY = me.getY();

msg = "Up";

repaint();

}

// Handle mouse dragged.

public void mouseDragged(MouseEvent me) {

// save coordinates

mouseX = me.getX();

mouseY = me.getY();

movX = me.getX();

movY = me.getY();

msg = "*";

repaint();

}

// Handle mouse moved.

public void mouseMoved(MouseEvent me) {

// save coordinates

movX = me.getX();

movY = me.getY();

repaint(0, 0, 100, 20);

}

// Display msg in applet window.

public void paint(Graphics g) {

g.drawString(msg, mouseX, mouseY);

g.drawString("Mouse at " + movX + ", " + movY, 0, 10);

}

}

Sample output from this program is shown here:

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 170 Object Oriented Programming

Creating a Windowed Program:

Although creating applets is the most common use for Java’s AWT, it is possible to create stand-

alone AWT-based applications, too. To do this, simply create an instance of the window or

windows you need inside main(). For example, the following program creates a frame window

that responds to mouse clicks and keystrokes:

// Create an AWT-based application.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

// Create a frame window.

public class AppWindow extends Frame {

String keymsg = "This is a test.";

String mousemsg = "";

int mouseX=30, mouseY=30;

public AppWindow() {

addKeyListener(new MyKeyAdapter(this));

addMouseListener(new MyMouseAdapter(this));

addWindowListener(new MyWindowAdapter());

}

public void paint(Graphics g) {

g.drawString(keymsg, 10, 40);

g.drawString(mousemsg, mouseX, mouseY);

}

// Create the window.

public static void main(String args[]) {

AppWindow appwin = new AppWindow();

appwin.setSize(new Dimension(300, 200));

appwin.setTitle("An AWT-Based Application");

appwin.setVisible(true);

}

}

class MyKeyAdapter extends KeyAdapter {

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 171 Object Oriented Programming

AppWindow appWindow;

public MyKeyAdapter(AppWindow appWindow) {

this.appWindow = appWindow;

}

public void keyTyped(KeyEvent ke) {

appWindow.keymsg += ke.getKeyChar();

appWindow.repaint();

};

}

class MyMouseAdapter extends MouseAdapter {

AppWindow appWindow;

public MyMouseAdapter(AppWindow appWindow) {

this.appWindow = appWindow;

}

public void mousePressed(MouseEvent me) {

appWindow.mouseX = me.getX();

appWindow.mouseY = me.getY();

appWindow.mousemsg = "Mouse Down at " + appWindow.mouseX +

", " + appWindow.mouseY;

appWindow.repaint();

}

}

class MyWindowAdapter extends WindowAdapter {

public void windowClosing(WindowEvent we) {

System.exit(0);

}

}

Sample output from this program is shown here:

Once created, a frame window takes on a life of its own. Notice that main() ends with the call

to appwin.setVisible(true). However, the program keeps running until you close the window. In

essence, when creating a windowed application, you will use main() to launch its top-level

window. After that, your program will function as a GUI-based application, not like the console-

based programs used earlier.

user interface components:

Controls are components that allow a user to interact with your application in various ways—for

example, a commonly used control is the push button. A layout manager automatically positions

components within a container. Thus, the appearance of a window is determined by a combination

of the controls that it contains and the layout manager used to position them.

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 172 Object Oriented Programming

In addition to the controls, a frame window can also include a standard-style menu bar. Each entry

in a menu bar activates a drop-down menu of options from which the user can choose. A menu

bar is always positioned at the top of a window. Although different in appearance, menu bars are

handled in much the same way as are the other controls. While it is possible to manually position

components within a window, doing so is quite tedious. The layout manager automates this

task.We introduces the various controls, the default layout manager will be used. This displays

components in a container using left-to-right, top-to-bottom organization.

Control Fundamentals:

The AWT supports the following types of controls:
■ Labels

■ Push buttons

■ Check boxes

■ Choice lists

■ Lists

■ Scroll bars

■ Text editing

These controls are subclasses of Component.

Adding and Removing Controls:

To include a control in a window, you must add it to the window. To do this, you must first create

an instance of the desired control and then add it to a window by calling add(), which is defined

by Container. The add() method has several forms.

Component add(Component compObj)

Here, compObj is an instance of the control that you want to add. A reference to compObj is

returned. Once a control has been added, it will automatically be visible whenever its parent

window is displayed.

Sometimes you will want to remove a control from a window when the control is no longer

needed. To do this, call remove(). This method is also defined by Container.

It has this general form:

void remove(Component obj)

Here, obj is a reference to the control you want to remove. You can remove all controls by calling

removeAll().

Responding to Controls

Except for labels, which are passive controls, all controls generate events when they are accessed

by the user. For example, when the user clicks on a push button, an event is sent that identifies

the push button. In general, your program simply implements the appropriate interface and then

registers an event listener for each control that you need to monitor. As explained in Chapter 20,

once a listener has been installed, events are automatically sent to it. In the sections that follow,

the appropriate interface for each control is specified.

1. Labels:

The easiest control to use is a label. A label is an object of type Label, and it contains a string,

which it displays. Labels are passive controls that do not support any interaction with the user.

Label defines the following constructors:

Label()

Label(String str)

Label(String str, int how)

The first version creates a blank label. The second version creates a label that contains the string

specified by str. This string is left-justified. The third version creates a label that contains the

string specified by str using the alignment specified by how. The value of how must be one of

these three constants: Label.LEFT, Label.RIGHT, or Label.CENTER. You can set or change

the text in a label by using the setText() method. You can obtain the current label by calling

getText(). These methods are shown here:

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 173 Object Oriented Programming

void setText(String str)

String getText()

For setText(), str specifies the new label. For getText(), the current label is returned. You can

set the alignment of the string within the label by calling setAlignment(). To obtain the current

alignment, call getAlignment(). The methods are as follows:

void setAlignment(int how)

int getAlignment()

Here, how must be one of the alignment constants shown earlier.

The following example creates three labels and adds them to an applet:

// Demonstrate Labels

import java.awt.*;

import java.applet.*;

/*

<applet code="LabelDemo" width=300 height=200>

</applet>

*/

public class LabelDemo extends Applet {

public void init() {

Label one = new Label("One");

Label two = new Label("Two");

Label three = new Label("Three");

// add labels to applet window

add(one);

add(two);

add(three);

}

}

Following is the window created by the LabelDemo applet. Notice that the labels are organized

in the window by the default layout manager.

2. Buttons:

The most widely used control is the push button. A push button is a component that ontains a label

and that generates an event when it is pressed. Push buttons are objects of type Button. Button

defines these two constructors:

Button()

Button(String str)

The first version creates an empty button. The second creates a button that contains str as a

label.

After a button has been created, you can set its label by calling setLabel(). You can retrieve its

label by calling getLabel(). These methods are as follows:

void setLabel(String str)

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 174 Object Oriented Programming

String getLabel()

Here, str becomes the new label for the button.

3. Check Boxes:

A check box is a control that is used to turn an option on or off. It consists of a small box that

can either contain a check mark or not. There is a label associated with each check box that

describes what option the box represents. You change the state of a check box by clicking on it.

Check boxes can be used individually or as part of a group. Check boxes are objects of the

Checkbox class.

Checkbox supports these constructors:

Checkbox()

Checkbox(String str)

Checkbox(String str, boolean on)

Checkbox(String str, boolean on, CheckboxGroup cbGroup)

Checkbox(String str, CheckboxGroup cbGroup, boolean on)

The first form creates a check box whose label is initially blank. The state of the check box is

unchecked. The second form creates a check box whose label is specified by str. The state of the

check box is unchecked. The third form allows you to set the initial state of the check box. If on

is true, the check box is initially checked; otherwise, it is cleared. The fourth and fifth forms

create a check box whose label is specified by str and whose group is specified by cbGroup. If

this check box is not part of a group, then cbGroup must be null. (Check box groups are described

in the next section.) The value of on determines the initial state of the check box. To retrieve the

current state of a check box, call getState(). To set its state, call setState(). You can obtain the

current label associated with a check box by calling getLabel(). To set the label, call setLabel(

). These methods are as follows:

boolean getState()

void setState(boolean on)

String getLabel()

void setLabel(String str)

Here, if on is true, the box is checked. If it is false, the box is cleared. The string passed in str

becomes the new label associated with the invoking check box.

4. CheckboxGroup:

It is possible to create a set of mutually exclusive check boxes in which one and only one check

box in the group can be checked at any one time. These check boxes are often called radio buttons,

because they act like the station selector on a car radio—only one station can be selected at any

one time. To create a set of mutually exclusive check boxes, you must first define the group to

which they will belong and then specify that group when you construct the check boxes. Check

box groups are objects of type CheckboxGroup. Only the default constructor is defined, which

creates an empty group. You can determine which check box in a group is currently selected by

calling getSelectedCheckbox(). You can set a check box by calling setSelectedCheckbox().

These methods are as follows:

Checkbox getSelectedCheckbox()

void setSelectedCheckbox(Checkbox which)

Here, which is the check box that you want to be selected. The previously selected check box

will be turned off.

5. Choice Controls:

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 175 Object Oriented Programming

The Choice class is used to create a pop-up list of items from which the user may choose. Thus,

a Choice control is a form of menu. When inactive, a Choice component takes up only enough

space to show the currently selected item. When the user clicks on it, the whole list of choices

pops up, and a new selection can be made. Each item in the list is a string that appears as a left-

justified label in the order it is added to the Choice object. Choice only defines the default

constructor, which creates an empty list.

To add a selection to the list, call add(). It has this general form:

void add(String name)

Here, name is the name of the item being added. Items are added to the list in the order in which

calls to add() occur.

To determine which item is currently selected, you may call either getSelectedItem() or

getSelectedIndex(). These methods are shown here:

String getSelectedItem()

int getSelectedIndex()

The getSelectedItem() method returns a string containing the name of the item.

getSelectedIndex() returns the index of the item. The first item is at index 0. By default, the first

item added to the list is selected.

To obtain the number of items in the list, call getItemCount(). You can set the currently selected

item using the select() method with either a zero-based integer index or a string that will match

a name in the list. These methods are shown here:

int getItemCount()

void select(int index)

void select(String name)

Given an index, you can obtain the name associated with the item at that index by calling

getItem(), which has this general form:

String getItem(int index)

Here, index specifies the index of the desired item.

6. Lists:

The List class provides a compact, multiple-choice, scrolling selection list. Unlike the Choice

object, which shows only the single selected item in the menu, a List object can be constructed to

show any number of choices in the visible window. It can also be created to allow multiple

selections. List provides these constructors:

List()

List(int numRows)

List(int numRows, boolean multipleSelect)

The first version creates a List control that allows only one item to be selected at any one time. In

the second form, the value of numRows specifies the number of entries in the list that will always

be visible (others can be scrolled into view as needed). In the third form, if multipleSelect is true,

then the user may select two or more items at a time.

If it is false, then only one item may be selected.

To add a selection to the list, call add(). It has the following two forms:

void add(String name)

void add(String name, int index)

Here, name is the name of the item added to the list. The first form adds items to the end of the

list. The second form adds the item at the index specified by index. Indexing begins at zero. You

can specify –1 to add the item to the end of the list.

For lists that allow only single selection, you can determine which item is currently selected by

calling either getSelectedItem() or getSelectedIndex(). These methods are shown here:

String getSelectedItem()

int getSelectedIndex()

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 176 Object Oriented Programming

The getSelectedItem() method returns a string containing the name of the item. If more than one

item is selected or if no selection has yet been made, null is returned. getSelectedIndex() returns

the index of the item. The first item is at index 0. If more than one item is selected, or if no

selection has yet been made, –1 is returned. For lists that allow multiple selection, you must use

either getSelectedItems() or getSelectedIndexes(), shown here, to determine the current

selections:

String[] getSelectedItems()

int[] getSelectedIndexes()

getSelectedItems() returns an array containing the names of the currently selected items.

getSelectedIndexes() returns an array containing the indexes of the currently selected items.

To obtain the number of items in the list, call getItemCount(). You can set the currently

selected item by using the select() method with a zero-based integer index.

These methods are shown here:

int getItemCount()

void select(int index)

Given an index, you can obtain the name associated with the item at that index by calling

getItem(), which has this general form:

String getItem(int index)

Here, index specifies the index of the desired item

7. Managing Scroll Bars:

Scroll bars are used to select continuous values between a specified minimum and maximum.

Scroll bars may be oriented horizontally or vertically. A scroll bar is actually a composite of

several individual parts. Each end has an arrow that you can click to move the current value of the

scroll bar one unit in the direction of the arrow. The current value of the scroll bar relative to its

minimum and maximum values is indicated by the slider box (or thumb) for the scroll bar. The

slider box can be dragged by the user to a new position. The scroll bar will then reflect this value.

In the background space on either side of the thumb, the user can click to cause the thumb to jump

in that direction by some increment larger than 1. Typically, this action translates into some form

of page up and page down.

Scroll bars are encapsulated by the Scrollbar class.

Scrollbar defines the following constructors:

Scrollbar()

Scrollbar(int style)

Scrollbar(int style, int initialValue, int thumbSize, int min, int max)

The first form creates a vertical scroll bar. The second and third forms allow you to specify the

orientation of the scroll bar. If style is Scrollbar.VERTICAL, a vertical scroll bar is created. If

style is Scrollbar.HORIZONTAL, the scroll bar is horizontal. In the third form of the

constructor, the initial value of the scroll bar is passed in initialValue. The number of units

represented by the height of the thumb is passed in thumbSize. The minimum and maximum values

for the scroll bar are specified by min and max. If you construct a scroll bar by using one of the

first two constructors, then you need to set its parameters by using setValues(), shown here,

before it can be used:

void setValues(int initialValue, int thumbSize, int min, int max)

The parameters have the same meaning as they have in the third constructor just described.

To obtain the current value of the scroll bar, call getValue(). It returns the current setting. To set

the current value, call setValue(). These methods are as follows:

int getValue()

void setValue(int newValue)

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 177 Object Oriented Programming

Here, newValue specifies the new value for the scroll bar. When you set a value, the slider box

inside the scroll bar will be positioned to reflect the new value. You can also retrieve the minimum

and maximum values via getMinimum() and getMaximum(), shown here:

int getMinimum()

int getMaximum()

They return the requested quantity. By default, 1 is the increment added to or subtracted from the

scroll bar each time it is scrolled up or down one line. You can change this increment by calling

setUnitIncrement(). By default, page-up and page-down increments are 10. You can change this

value by calling setBlockIncrement(). These methods are shown here:

void setUnitIncrement(int newIncr)

void setBlockIncrement(int newIncr)

8. Using a TextField:

The TextField class implements a single-line text-entry area, usually called an edit control. Text

fields allow the user to enter strings and to edit the text using the arrow keys, cut and paste keys,

and mouse selections. TextField is a subclass of TextComponent. TextField defines the

following constructors:

TextField()

TextField(int numChars)

TextField(String str)

TextField(String str, int numChars)

The first version creates a default text field. The second form creates a text field that is numChars

characters wide. The third form initializes the text field with the string contained in str. The fourth

form initializes a text field and sets its width. TextField (and its superclass TextComponent)

provides several methods that allow you to utilize a text field. To obtain the string currently

contained in the text field, call getText(). To set the text, call setText(). These methods are as

follows:

String getText()

void setText(String str)

Here, str is the new string.

The user can select a portion of the text in a text field. Also, you can select a portion of text under

program control by using select(). Your program can obtain the currently selected text by calling

getSelectedText(). These methods are shown here:

String getSelectedText()

void select(int startIndex, int endIndex)

getSelectedText() returns the selected text. The select() method selects the characters beginning

at startIndex and ending at endIndex–1. You can control whether the contents of a text field

may be modified by the user by calling setEditable(). You can determine editability by calling

isEditable(). These methods are shown here:

boolean isEditable()

void setEditable(boolean canEdit)

isEditable() returns true if the text may be changed and false if not. In setEditable(), if canEdit

is true, the text may be changed. If it is false, the text cannot be altered. There may be times when

you will want the user to enter text that is not displayed, such as a password. You can disable the

echoing of the characters as they are typed by calling setEchoChar(). This method specifies a

single character that the TextField will display when characters are entered (thus, the actual

characters typed will not be shown). You can check a text field to see if it is in this mode with the

echoCharIsSet() method. You can retrieve the echo character by calling the getEchoChar()

method.

These methods are as follows:

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 178 Object Oriented Programming

void setEchoChar(char ch)

boolean echoCharIsSet()

char getEchoChar()

Here, ch specifies the character to be echoed.

9. Using a TextArea:

Sometimes a single line of text input is not enough for a given task. To handle these situations,

the AWT includes a simple multiline editor called TextArea. Following are the constructors for

TextArea:

TextArea()

TextArea(int numLines, int numChars)

TextArea(String str)

TextArea(String str, int numLines, int numChars)

TextArea(String str, int numLines, int numChars, int sBars)

Here, numLines specifies the height, in lines, of the text area, and numChars specifies its width,

in characters. Initial text can be specified by str. In the fifth form you can specify the scroll bars

that you want the control to have. sBars must be one of these values:

SCROLLBARS_BOTH SCROLLBARS_NONE

SCROLLBARS_HORIZONTAL_ONLY SCROLLBARS_VERTICAL_ONLY

TextArea is a subclass of TextComponent. Therefore, it supports the getText(), setText(),

getSelectedText(), select(), isEditable(), and setEditable() methods TextArea adds the

following methods:

void append(String str)

void insert(String str, int index)

void replaceRange(String str, int startIndex, int endIndex)

The append() method appends the string specified by str to the end of the current text. insert()

inserts the string passed in str at the specified index. To replace text, call replaceRange(). It

replaces the characters from startIndex to endIndex–1, with the replacement text passed in str.

Text areas are almost self-contained controls. Your program incurs virtually no management

overhead. Text areas only generate got-focus and lost-focus events. Normally, your program

simply obtains the current text when it is needed.

Understanding Layout Managers:

All of the components that we have shown so far have been positioned by the default layout

manager. a layout manager automatically arranges your controls within a window by using some

type of algorithm.

If you have programmed for other GUI environments, such as Windows, then you are accustomed

to laying out your controls by hand. While it is possible to lay out Java controls by hand, too, you

generally won’t want to, for two main reasons. First, it is very tedious to manually lay out a large

number of components. Second, sometimes the width and height information is not yet available

when you need to arrange some control, because the native toolkit components haven’t been

realized.

Each Container object has a layout manager associated with it. A layout manager is an instance

of any class that implements the LayoutManager interface. The layout manager is set by the

setLayout() method. If no call to setLayout() is made, then the default layout manager is used.

Whenever a container is resized (or sized for the first time), the layout manager is used to position

each of the components within it.

The setLayout() method has the following general form:

void setLayout(LayoutManager layoutObj)

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 179 Object Oriented Programming

Here, layoutObj is a reference to the desired layout manager. If you wish to disable the layout

manager and position components manually, pass null for layoutObj. If you do this, you will need

to determine the shape and position of each component manually, using the setBounds() method

defined by Component. Normally, you will want to use a layout manager.

Each layout manager keeps track of a list of components that are stored by their names. The layout

manager is notified each time you add a component to a container. Whenever the container needs

to be resized, the layout manager is consulted via its minimumLayoutSize() and

preferredLayoutSize() methods. Each component that is being managed by a layout manager

contains the getPreferredSize() and getMinimumSize() methods. These return the preferred

and minimum size required to display each component. The layout manager will honor these

requests if at all possible, while maintaining the integrity of the layout policy. You may override

these methods for controls that you subclass. Default values are provided otherwise. Java has

several predefined LayoutManager classes.

1. FlowLayout:

FlowLayout is the default layout manager. FlowLayout implements a simple layout style, which

is similar to how words flow in a text editor. Components are laid out from the upper-left corner,

left to right and top to bottom. When no more components fit on a line, the next one appears on

the next line. A small space is left between each component, above and below, as well as left and

right. Here are the constructors for FlowLayout:

FlowLayout()

FlowLayout(int how)

FlowLayout(int how, int horz, int vert)

The first form creates the default layout, which centers components and leaves five pixels of space

between each component. The second form lets you specify how each line is aligned. Valid values

for how are as follows:

FlowLayout.LEFT

FlowLayout.CENTER

FlowLayout.RIGHT

These values specify left, center, and right alignment, respectively. The third form allows you to

specify the horizontal and vertical space left between components in horz and vert, respectively.

2. BorderLayout:

The BorderLayout class implements a common layout style for top-level windows. It has four

narrow, fixed-width components at the edges and one large area in the center. The four sides are

referred to as north, south, east, and west. The middle area is called the center. Here are the

constructors defined by BorderLayout:

BorderLayout()

BorderLayout(int horz, int vert)

The first form creates a default border layout. The second allows you to specify the horizontal and

vertical space left between components in horz and vert, respectively. BorderLayout defines the

following constants that specify the regions:

BorderLayout.CENTER BorderLayout.SOUTH

BorderLayout.EAST BorderLayout.WEST

BorderLayout.NORTH

When adding components, you will use these constants with the following form of add(),

which is defined by Container:

void add(Component compObj, Object region);

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 180 Object Oriented Programming

Here, compObj is the component to be added, and region specifies where the component will be

added.

3. GridLayout:

GridLayout lays out components in a two-dimensional grid. When you instantiate a GridLayout,

you define the number of rows and columns. The constructors supported by GridLayout are

shown here:

GridLayout()

GridLayout(int numRows, int numColumns)

GridLayout(int numRows, int numColumns, int horz, int vert)

The first form creates a single-column grid layout. The second form creates a grid layout with the

specified number of rows and columns. The third form allows you to specify the horizontal and

vertical space left between components in horz and vert, respectively. Either numRows or

numColumns can be zero. Specifying numRows as zero allows for unlimited-length columns.

Specifying numColumns as zero allows for unlimited-length rows.

Here is a sample program that creates a 4×4 grid and fills it in with 15 buttons, each

labeled with its index:

// Demonstrate GridLayout

import java.awt.*;

import java.applet.*;

/*

<applet code="GridLayoutDemo" width=300 height=200>

</applet>

*/

public class GridLayoutDemo extends Applet {

static final int n = 4;

public void init() {

setLayout(new GridLayout(n, n));

setFont(new Font("SansSerif", Font.BOLD, 24));

for(int i = 0; i < n; i++) {

for(int j = 0; j < n; j++) {

int k = i * n + j;

if(k > 0)

add(new Button("" + k));

}

}

}

}

Following is the output generated by the GridLayoutDemo

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 181 Object Oriented Programming

4. CardLayout:

The CardLayout class is unique among the other layout managers in that it stores several

different layouts. Each layout can be thought of as being on a separate index card in a deck that

can be shuffled so that any card is on top at a given time. This can be useful for user interfaces

with optional components that can be dynamically enabled and disabled upon user input. You can

prepare the other layouts and have them hidden, ready to be activated when needed.

CardLayout provides these two constructors:

CardLayout()

CardLayout(int horz, int vert)

The first form creates a default card layout. The second form allows you to specify the horizontal

and vertical space left between components in horz and vert, respectively. Use of a card layout

requires a bit more work than the other layouts. The cards are typically held in an object of type

Panel. This panel must have CardLayout selected as its layout manager. The cards that form the

deck are also typically objects of type Panel. Thus, you must create a panel that contains the deck

and a panel for each card in the deck. Next, you add to the appropriate panel the components that

form each card. You then add these panels to the panel for which CardLayout is the layout

manager. Finally, you add this panel to the main applet panel. Once these steps are complete, you

must provide some way for the user to select between cards. One common approach is to include

one push button for each card in the deck. When card panels are added to a panel, they are usually

given a name. Thus, most

of the time, you will use this form of add() when adding cards to a panel:

void add(Component panelObj, Object name);

Here, name is a string that specifies the name of the card whose panel is specified by panelObj.

After you have created a deck, your program activates a card by calling one of the following

methods defined by CardLayout:

void first(Container deck)

void last(Container deck)

void next(Container deck)

void previous(Container deck)

void show(Container deck, String cardName)

Here, deck is a reference to the container (usually a panel) that holds the cards, and cardName is

the name of a card. Calling first() causes the first card in the deck to be shown. To show the

last card, call last(). To show the next card, call next(). To show the previous card, call

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 182 Object Oriented Programming

previous(). Both next() and previous() automatically cycle back to the top or bottom of the

deck, respectively. The show() method displays the card whose name is passed in cardName.

Menu Bars and Menus:

A top-level window can have a menu bar associated with it. A menu bar displays a list of top-

level menu choices. Each choice is associated with a drop-down menu. This concept is

implemented in Java by the following classes: MenuBar, Menu, and MenuItem. In general, a

menu bar contains one or more Menu objects. Each Menu object contains a list of MenuItem

objects. Each MenuItem object represents something that can be selected by the user. Since

Menu is a subclass of MenuItem, a hierarchy of nested submenus can be created. It is also

possible to include checkable menu items. These are menu options of type CheckboxMenuItem

and will have a check mark next to them when they are selected.

To create a menu bar, first create an instance of MenuBar. This class only defines the default

constructor. Next, create instances of Menu that will define the selections displayed on the bar.

Following are the constructors for Menu:

Menu()

Menu(String optionName)

Menu(String optionName, boolean removable)

Here, optionName specifies the name of the menu selection. If removable is true, the pop-up

menu can be removed and allowed to float free. Otherwise, it will remain attached to the

menu bar. (Removable menus are implementation-dependent.) The first form creates an empty

menu. Individual menu items are of type MenuItem. It defines these constructors:

MenuItem()

MenuItem(String itemName)

MenuItem(String itemName, MenuShortcut keyAccel)

Here, itemName is the name shown in the menu, and keyAccel is the menu shortcut for this item.

You can disable or enable a menu item by using the setEnabled() method. Its form

is shown here:

void setEnabled(boolean enabledFlag)

If the argument enabledFlag is true, the menu item is enabled. If false, the menu item is

disabled. You can determine an item’s status by calling isEnabled(). This method is

shown here:

boolean isEnabled()

isEnabled() returns true if the menu item on which it is called is enabled. Otherwise, it returns

false. You can change the name of a menu item by calling setLabel(). You can retrieve the current

name by using getLabel(). These methods are as follows:

void setLabel(String newName)

String getLabel()

Here, newName becomes the new name of the invoking menu item. getLabel() returns the current

name. You can create a checkable menu item by using a subclass of MenuItem called

CheckboxMenuItem. It has these constructors:

CheckboxMenuItem()

CheckboxMenuItem(String itemName)

CheckboxMenuItem(String itemName, boolean on)

Here, itemName is the name shown in the menu. Checkable items operate as toggles. Each time

one is selected, its state changes. In the first two forms, the checkable entry is unchecked. In the

third form, if on is true, the checkable entry is initially checked. Otherwise, it is cleared. You can

obtain the status of a checkable item by calling getState(). You can set it to a known state by

using setState(). These methods are shown here:

boolean getState()

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 183 Object Oriented Programming

void setState(boolean checked)

If the item is checked, getState() returns true. Otherwise, it returns false. To check an item,

pass true to setState(). To clear an item, pass false. Once you have created a menu item, you

must add the item to a Menu object by using add(), which has the following general form:

MenuItem add(MenuItem item)

Here, item is the item being added. Items are added to a menu in the order in which the calls to

add() take place. The item is returned. Once you have added all items to a Menu object, you can

add that object to the menubar by using this version of add() defined by MenuBar:

Menu add(Menu menu)

Here, menu is the menu being added. The menu is returned.

Menus only generate events when an item of type MenuItem or CheckboxMenuItem is selected.

They do not generate events when a menu bar is accessed to display a drop-down menu, for

example. Each time a menu item is selected, an ActionEvent object is generated.

Each time a check box menu item is checked or unchecked, an ItemEvent object is generated.

Thus, you must implement the ActionListener and ItemListener interfaces in order to handle

these menu events.

The getItem() method of ItemEvent returns a reference to the item that generated this event. The

general form of this method is shown here:

Object getItem()

Dialog Boxes:

Often, you will want to use a dialog box to hold a set of related controls. Dialog boxes are

primarily used to obtain user input. They are similar to frame windows, except that dialog boxes

are always child windows of a top-level window. Also, dialog boxes don’t have menu bars. In

other respects, dialog boxes function like frame windows. (You can add controls to them, for

example, in the same way that you add controls to a frame window.) Dialog boxes may be modal

or modeless. When a modal dialog box is active, all input is directed to it until it is closed. This

means that you cannot access other parts of your program until you have closed the dialog box.

When a modeless dialog box is active, input focus can be directed to another window in your

program. Thus, other parts of your program remain active and accessible. Dialog boxes are of

type Dialog.

Two commonly used constructors are shown here:

Dialog(Frame parentWindow, boolean mode)

Dialog(Frame parentWindow, String title, boolean mode)

Here, parentWindow is the owner of the dialog box. If mode is true, the dialog box is modal.

Otherwise, it is modeless. The title of the dialog box can be passed in title. Generally, you will

subclass Dialog, adding the functionality required by your application. when the dialog box is

closed, dispose() is called. This method is defined by Window, and it frees all system

resources associated with the dialog box window.

FileDialog:

Java provides a built-in dialog box that lets the user specify a file. To create a file dialog box,

instantiate an object of type FileDialog. This causes a file dialog box to be displayed. Usually,

this is the standard file dialog box provided by the operating system. FileDialog provides these

constructors:

FileDialog(Frame parent, String boxName)

FileDialog(Frame parent, String boxName, int how)

FileDialog(Frame parent)

Here, parent is the owner of the dialog box, and boxName is the name displayed in the box’s

title bar. If boxName is omitted, the title of the dialog box is empty. If how is

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 184 Object Oriented Programming

FileDialog.LOAD, then the box is selecting a file for reading. If how is FileDialog.SAVE, the

box is selecting a file for writing. The third constructor creates a dialog box for selecting a file for

reading. FileDialog() provides methods that allow you to determine the name of the file and its

path as selected by the user. Here are two examples:

String getDirectory()

String getFile()

These methods return the directory and the filename, respectively.

Working with Graphics:

The AWT supports a rich assortment of graphics methods. All graphics are drawn relative to a

window. This can be the main window of an applet, a child window of an applet, or a stand- alone

application window. The origin of each window is at the top-left corner and is 0,0. Coordinates

are specified in pixels. All output to a window takes place through a graphics context. A graphics

context is encapsulated by the Graphics class and is obtained in two ways:

■ It is passed to an applet when one of its various methods, such as paint() or

update(), is called.

■ It is returned by the getGraphics() method of Component.

The Graphics class defines a number of drawing functions. Each shape can be drawn edge-only

or filled. Objects are drawn and filled in the currently selected graphics color, which is black by

default. When a graphics object is drawn that exceeds the dimensions of the window, output is

automatically clipped. Let’s take a look at several of the drawing methods.

Drawing Lines

Lines are drawn by means of the drawLine() method, shown here:

void drawLine(int startX, int startY, int endX, int endY)

drawLine() displays a line in the current drawing color that begins at startX,startY and ends at

endX,endY.

The following applet draws several lines:

// Draw lines

import java.awt.*;

import java.applet.*;

/*

<applet code="Lines" width=300 height=200>

</applet>

*/

public class Lines extends Applet {

public void paint(Graphics g) {

g.drawLine(0, 0, 100, 100);

g.drawLine(0, 100, 100, 0);

g.drawLine(40, 25, 250, 180);

g.drawLine(75, 90, 400, 400);

g.drawLine(20, 150, 400, 40);

g.drawLine(5, 290, 80, 19);

}

}

Sample output from this program is shown here:

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 185 Object Oriented Programming

Drawing Rectangles

The drawRect() and fillRect() methods display an outlined and filled rectangle, respectively.

They are shown here:

void drawRect(int top, int left, int width, int height)

void fillRect(int top, int left, int width, int height)

The upper-left corner of the rectangle is at top,left. The dimensions of the rectangle are specified

by width and height.

To draw a rounded rectangle, use drawRoundRect() or fillRoundRect(), both shown here:

void drawRoundRect(int top, int left, int width, int height,

int xDiam, int yDiam) void fillRoundRect(int top, int left, int width, int height,

int xDiam, int yDiam)

A rounded rectangle has rounded corners. The upper-left corner of the rectangle is at top,left. The

dimensions of the rectangle are specified by width and height. The diameter of the rounding arc

along the X axis is specified by xDiam. The diameter of the rounding arc along the Y axis is

specified by yDiam.

Drawing Ellipses and Circles

To draw an ellipse, use drawOval(). To fill an ellipse, use fillOval(). These methods are

shown here:

void drawOval(int top, int left, int width, int height)

void fillOval(int top, int left, int width, int height)

The ellipse is drawn within a bounding rectangle whose upper-left corner is specified by top,left

and whose width and height are specified by width and height. To draw a circle, specify a square

as the bounding rectangle.

The following program draws several ellipses:

// Draw Ellipses

import java.awt.*;

import java.applet.*;

/*

<applet code="Ellipses" width=300 height=200>

</applet>

*/

public class Ellipses extends Applet {

public void paint(Graphics g) {

g.drawOval(10, 10, 50, 50);

g.fillOval(100, 10, 75, 50);

g.drawOval(190, 10, 90, 30);

g.fillOval(70, 90, 140, 100);

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 186 Object Oriented Programming

}

}

Sample output from this program is shown here

UNIT-8 Applets & swings

Applet Basics:

The Applet class is contained in the java.applet package.All applets are subclasses of Applet.

Thus, all applets must import java.applet. Applets must also import java.awt. Recall that AWT

stands for the Abstract Window Toolkit. Since all applets run in a window, it is necessary to

include support for that window. Applets are not executed by the console-based Java run-time

interpreter. Rather, they are executed by either a Web browser or an applet viewerExecution of

an applet does not begin at main(). Actually, few applets even have main() methods. Instead,

execution of an applet is started and controlled with an entirely different mechanism, which will

be explained shortly. Output to your applet’s window is not performed by System.out.println(

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 187 Object Oriented Programming

). Rather, it is handled with various AWT methods, such as drawString(), which outputs a string

to a specified X,Y location. Input is also handled differently than in an application.

Once an applet has been compiled, it is included in an HTML file using the APPLET tag. The

applet will be executed by a Java-enabled web browser when it encounters the APPLET tag within

the HTML file. To view and test an applet more conveniently, simply include a comment at the

head of your Java source code file that contains the APPLET tag. This way, your code is

documented with the necessary HTML statements needed by your applet, and you can test the

compiled applet by starting the applet viewer with your Java source code file specified as the

target.

example of such a comment:

/*

<applet code="MyApplet" width=200 height=60>

</applet>

*/

This comment contains an APPLET tag that will run an applet called MyApplet in a window that

is 200 pixels wide and 60 pixels high. Since the inclusion of an APPLET command makes testing

applets easier.

differences between applets and applications: An applet runs under the control of a browser,

whereas an application runs stand-alone, with the support of a virtual machine. As such, an applet

is subjected to more stringent security restrictions in terms of file and network access, whereas an

application can have free reign over these resources.

Applets are great for creating dynamic and interactive web applications, but the true power of

Java lies in writing full blown applications. With the limitation of disk and network access, it

would be difficult to write commercial applications (though through the user of server based file

systems, not impossible). However, a Java application has full network and local file system

access, and its potential is limited only by the creativity of its developers.

OTHER DIFFERENCES BETWEEN APPLETS AND APPLICATIONS

 No main() method: Applets do not need a main() method to exist anywhere because

they are running inside another program (the browser) and are thus not a stand-alone

program.

 No parameterized constructor: The browser calls the default, unparameterized

constructor of an Applet, so parameterized constructors are not generally useful.

Applets can be called from the web page with parameters however. See the

discussion of the getParameters() method below.

 The init() method: An applet runs this special method AFTER THE CONSTRUCTOR
IS RUN. This method is used instead of the constructor to initialize the applet.

 Applets are stay resident: Applets stay in the computer's memory until the browser

itself closes. That is, even if the browser changes to a new web page, the applet

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 188 Object Oriented Programming

stays around. THE APPLET'S INIT() METHOD IS ONLY RUN ONCE, NO

MATTER HOW MANY TIMES THE BROWSER REVISITS THE PAGE WITH

THE APPLET.

 The start() method: This method of an applet is called whenever the applet is shown

in the browser. IT IS CALLED AFTER INIT() AND EVERY TIME THE PAGE

CONTAINING THE APPLET IS REVISITED. This method is useful for

reinitializing the applet.

 The stop() method: This method of an applet IS CALLED WHENEVER THE

BROWSER LEAVES THE WEB PAGE CONTAINING THE APPLET. It is useful

for performing any clean-up needed by the applet to prepare it for a "dormant" state

when the browser is elsewhere. In particular, it is important to shutdown any extra

threads that are running and to free up other resources.

 The destroy() method: This method of an Applet is called when the browser itself exits

to free up the applet's resources. It is not usually called by the applet itself.

 The getParameter() method: This method of an Applet can be called from within the

applet to obtain the parameters, in String form, that were passed to the applet by the

web browser. The name of the desired parameter is the input value of this method,

and a string value is returned.

 The getAppletInfo() method: This method of an Applet is called by the browser, say

from a Javascript script, to obtain information about the applet.

 The getParameterInfo() method: This method of an Applet is called by the browser,

say from a Javascript script, to obtain information about the parameters needed by an

applet.

life cycle of an applet:All applets have the following four methods:

public void init();

public void start();

public void stop();

public void destroy();

They have these methods because their superclass, java.applet.Applet, has these methods.

In the superclass, these are simply do-nothing methods. For example,

public void init() {}

Subclasses may override these methods to accomplish certain tasks at certain times. For instance,

the init() method is a good place to read parameters that were passed to the applet via

<PARAM> tags because it's called exactly once when the applet starts up. However, they do not

have to override them. Since they're declared in the superclass, the Web browser can invoke them

when it needs to without knowing in advance whether the method is implemented in the superclass

or the subclass. This is a good example of polymorphism.

INIT(), START(), STOP(), AND DESTROY()

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 189 Object Oriented Programming

The init() method is called exactly once in an applet's life, when the applet is first loaded. It's

normally used to read PARAM tags, start downloading any other images or media files you need,

and set up the user interface. Most applets have init() methods.

The start() method is called at least once in an applet's life, when the applet is started or restarted.

In some cases it may be called more than once. Many applets you write will not have explicit

start()methods and will merely inherit one from their superclass. A start() method is often used to

start any threads the applet will need while it runs.

The stop() method is called at least once in an applet's life, when the browser leaves the page in

which the applet is embedded. The applet's start() method will be called if at some later point the

browser returns to the page containing the applet. In some cases the stop() method may be called

multiple times in an applet's life. Many applets you write will not have explicit stop()methods and

will merely inherit one from their superclass. Your applet should use the stop() method to pause

any running threads. When your applet is stopped, it SHOULD not use any CPU cycles.

The destroy() method is called exactly once in an applet's life, just before the browser unloads the

applet. This method is generally used to perform any final clean-up. For example, an applet that

stores state on the server might send some data back to the server before it's terminated. many

applets will not have explicit destroy() methods and just inherit one from their superclass.

For example, in a video applet, the init() method might draw the controls and start loading the

video file. The start() method would wait until the file was loaded, and then start playing it. The

stop() method would pause the video, but not rewind it. If the start() method were called again,

the video would pick up where it left off; it would not start over from the beginning. However, if

destroy() were called and then init(), the video would start over from the beginning.

In the JDK's appletviewer, selecting the Restart menu item calls stop() and then start(). Selecting

the Reload menu item calls stop(), destroy(), and init(), in that order. (Normally the byte codes

will also be reloaded and the HTML file reread though Netscape has a problem with this.)The

applet start() and stop() methods are not related to the similarly named methods in the

java.lang.Thread class.

Your own code may occasionally invoke start() and stop(). For example, it's customary to stop

playing an animation when the user clicks the mouse in the applet and restart it when they click

the mouse again.

Your own code can also invoke init() and destroy(), but this is normally a bad idea. Only the

environment should call init() and destroy().

Types of applets:There are two types of applets.

1.local applets:these applets are run within the browser.

2.remote applets:these appltes are run on the internet.

Difference is that local applet operate in single machine browser which is not connected in

network,while remote applet poerate over internet via network.

Local and Remote Applets:

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 190 Object Oriented Programming

One of Java's major strengths is that you can use the language to create dynamic content for your

Web pages. That is, thanks to Java applets, your Web pages are no longer limited to the tricks you

can perform with HTML. Now your Web pages can do just about anything you want them to. All

you need to do is write the appropriate applets.

But writing Java applets is only half the story. How your Web page's users obtain and run the

applets is equally as important. It's up to you to not only write the applet (or use someone else's

applet), but also to provide users access to the applet. Basically, your Web pages can contain two

types of applets: local and remote. In this section, you learn the difference between these applet

types, which are named after the location at which they are stored.

LOCAL APPLETS

A local applet is one that is stored on your own computer system .When your Web page must find

a local applet, it doesn't need to retrieve information from the Internet-in fact, your browser doesn't

even need to be connected to the Internet at that time. a local applet is specified by a path name

and a file name.

Specifying a Local Applet.

<applet

codebase="tictactoe"

code="TicTacToe.class"

width=120

height=120>

</applet>

the codebase attribute specifies a path name on your system for the local applet, whereas the code

attribute specifies the name of the byte-code file that contains the applet's code. The path specified

in the codebase attribute is relative to the folder containing the HTML document that references

the applet.

REMOTE APPLETS

A remote applet is one that is located on another computer system. This computer system may

be located in the building next door or it may be on the other side of the world-it makes no

difference to your Java-compatible browser. No matter where the remote applet is located, it's

downloaded onto your computer via the Internet. Your browser must, of course, be connected to

the Internet at the time it needs to display the remote applet.

To reference a remote applet in your Web page, you must know the applet's URL (where it's

located on the Web) and any attributes and parameters that you need to supply in order to display

the applet correctly. If you didn't write the applet, you'll need to find the document that

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 191 Object Oriented Programming

describes the applet's attributes and parameters. This document is usually written by the applet's

author. Listing shows how to compose an HTML <applet> tag that accesses a remote applet.

Listing: Specifiying a Remote Applet.

<applet

codebase="http://www.myconnect.com/applets/"

code="TicTacToe.class"

width=120

height=120>

</applet>

Creating Applets:

An Applet Skeleton
All but the most trivial applets override a set of methods that provides the basic mechanism by

which the browser or applet viewer interfaces to the applet and controls its execution. Four of

these methods—init(), start(), stop(), and destroy()—are defined by Applet. Another, paint(

), is defined by the AWT Component class. Default implementations for all of these methods are

provided. Applets do not need to override those methods they do not use. However, only very

simple applets will not need to define all of them. These five methods can be assembled into the

skeleton shown here:

// An Applet skeleton.

import java.awt.*;

import java.applet.*;

/*
<applet code="AppletSkel" width=300 height=100>

</applet>

*/

public class AppletSkel extends Applet {

// Called first.

public void init() {

// initialization

}

/* Called second, after init(). Also called whenever

the applet is restarted. */

public void start() {

// start or resume execution

}

// Called when the applet is stopped.

public void stop() {

// suspends execution

}

/* Called when applet is terminated. This is the last

method executed. */

public void destroy() {

http://www.myconnect.com/applets/

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 192 Object Oriented Programming

// perform shutdown activities

}

// Called when an applet's window must be restored.

public void paint(Graphics g) {

// redisplay contents of window

}

}

Although this skeleton does not do anything, it can be compiled and run. When run, it

generates the following window when viewed with an applet viewer:

Desiginig a wed page:

Java applets are programs which reside inon web pags.in order to run a applet it is first necessary

to have a web page that references the applet.web page is also known as HTML page or HTML

document.

Webpages are stored using a file extension .html ,we write the applet tag as

<applet

Code =hello.class

Width=400

Height=200>

</applet>

This html code tells the browser to load the hello.class which is in the same directory as the html

file.

Adding applet to html file:

<html>
<body>

<applet

Code =hello.class

Width=400

Height=200>

</applet>

</body>

</html>

We save the file as hello.html and save the file in the same directory where the .class file is

present.

Running the applet:

In the current directory we must have the following files

Hello.java

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 193 Object Oriented Programming

Hello.class

Hello.html

To run the applet we need one of the following tools:

1.java enabled web browser

2.java appletviewer

To run on a appletviewer we do as

Appletviewer hello.html

Passing Parameters to Applets:

the APPLET tag in HTML allows you to pass parameters to your applet. To retrieve a parameter,

use the getParameter() method. It returns the value of the specified parameter in the form of a

String object. Thus, for numeric and Boolean values, you will need to convert their string

representations into their internal formats.

Here is an example that demonstrates passing parameters

// Use Parameters

import java.awt.*;

import java.applet.*;

/*

<applet code="ParamDemo" width=300 height=80>

<param name=fontName value=Courier>

<param name=fontSize value=14>

<param name=leading value=2>

<param name=accountEnabled value=true>

</applet>

*/

public class ParamDemo extends Applet{

String fontName;

int fontSize;

float leading;

boolean active;

// Initialize the string to be displayed.

public void start() {

String param;

fontName = getParameter("fontName");

if(fontName == null)

fontName = "Not Found";

param = getParameter("fontSize");

try {

if(param != null) // if not found

fontSize = Integer.parseInt(param);

else

fontSize = 0;

} catch(NumberFormatException e) {

fontSize = -1;

}

param = getParameter("leading");

try {

if(param != null) // if not found

leading = Float.valueOf(param).floatValue();

else

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 194 Object Oriented Programming

leading = 0;

} catch(NumberFormatException e) {

leading = -1;

}

param = getParameter("accountEnabled");

if(param != null)

active = Boolean.valueOf(param).booleanValue();

}

// Display parameters.

public void paint(Graphics g) {

g.drawString("Font name: " + fontName, 0, 10);

g.drawString("Font size: " + fontSize, 0, 26);

g.drawString("Leading: " + leading, 0, 42);

g.drawString("Account Active: " + active, 0, 58);

}

}

Sample output from this program is shown here:

As the program shows, you should test the return values from getParameter(). If a parameter

isn’t available, getParameter() will return null. Also, conversions to numeric types must be

attempted in a try statement that catches NumberFormatException. Uncaught exceptions should

never occur within an applet.

SWING

Swing is a set of classes that provides more powerful and flexible components than are possible

with the AWT.In addition to the familiar components, such as buttons, check boxes, and labels,

Swing supplies several exciting additions, including tabbed panes, scroll panes, trees, and tables.

Even familiar components such as buttons have more capabilities in Swing. For example, a button

may have both an image and a text string associated with it. Also, the image can be changed as

the state of the button changes.

Unlike AWT components, Swing components are not implemented by platform-specific code.

Instead, they are written entirely in Java and, therefore, are platform-independent. The term

lightweight is used to describe such elements. The number of classes and interfaces in the Swing

packages is substantial

The Swing component classes that are used are shown here:

Class Description

AbstractButton Abstract superclass for Swing buttons.

ButtonGroup Encapsulates a mutually exclusive set of buttons.

ImageIcon Encapsulates an icon.

JApplet The Swing version of Applet.

JButton The Swing push button class.

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 195 Object Oriented Programming

JCheckBox The Swing check box class.

JComboBox Encapsulates a combo box (an combination of a drop-down list

and text field).

JLabel The Swing version of a label.

JRadioButton The Swing version of a radio button.

JScrollPane Encapsulates a scrollable window.

JTabbedPane Encapsulates a tabbed window.

JTable Encapsulates a table-based control.

JTextField The Swing version of a text field.

JTree Encapsulates a tree-based control.

The Swing-related classes are contained in javax.swing and its subpackages, such as

javax.swing.tree.

limitations of AWT:

AWT:

Pros

 Speed: use of native peers speeds component performance.

 Applet Portability: most Web browsers support AWT classes so AWT applets can run

without the Java plugin.

 Look and Feel: AWT components more closely reflect the look and feel of the OS they

run on.

Cons

 Portability: use of native peers creates platform specific limitations. Some components

may not function at all on some platforms.

 Third Party Development: the majority of component makers, including Borland and Sun,

base new component development on Swing components. There is a much smaller set of

AWT components available, thus placing the burden on the programmer to create his or

her own AWT-based components.

 Features: AWT components do not support features like icons and tool-tips.

Swing:

Pros

 Portability: Pure Java design provides for fewer platform specific limitations.

 Behavior: Pure Java design allows for a greater range of behavior for Swing components

since they are not limited by the native peers that AWT uses.

 Features: Swing supports a wider range of features like icons and pop-up tool-tips for

components.

 Vendor Support: Swing development is more active. Sun puts much more energy into

making Swing robust.

 Look and Feel: The pluggable look and feel lets you design a single set of GUI components

that can automatically have the look and feel of any OS platform (Microsoft Windows,

Solaris, Macintosh, etc.). It also makes it easier to make global changes to

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 196 Object Oriented Programming

your Java programs that provide greater accessibility (like picking a hi-contrast color

scheme or changing all the fonts in all dialogs, etc.).

Cons

 Applet Portability: Most Web browsers do not include the Swing classes, so the Java

plugin must be used.

 Performance: Swing components are generally slower and buggier than AWT, due to both

the fact that they are pure Java and to video issues on various platforms. Since Swing

components handle their own painting (rather than using native API's like DirectX on

Windows) you may run into graphical glitches.

 Look and Feel: Even when Swing components are set to use the look and feel of the OS

they are run on, they may not look like their native counterparts.

Exploring Swing:

JApplet:

Fundamental to Swing is the JApplet class, which extends Applet. Applets that use Swing must

be subclasses of JApplet. JApplet is rich with functionality that is not found in Applet. For

example, JApplet supports various ―panes,‖ such as the content pane, the glass pane, and the

root pane. one difference between Applet and JApplet is important to this discussion, because it

is used by the sample applets in this chapter. When adding a component to an instance of JApplet,

do not invoke the add() method of the applet. Instead, call add() for the content pane of the

JApplet object. The content pane can be obtained via the method shown here

Container getContentPane()

The add() method of Container can be used to add a component to a content pane.

Its form is shown here:

void add(comp)

Here, comp is the component to be added to the content pane.

Icons and Labels:

In Swing, icons are encapsulated by the ImageIcon class, which paints an icon from an

image. Two of its constructors are shown here:

ImageIcon(String filename)

ImageIcon(URL url)

The first form uses the image in the file named filename. The second form uses the image in the

resource identified by url. The ImageIcon class implements the Icon interface that declares the

methods

shown here:

Method Description

int getIconHeight() Returns the height of the icon in pixels.

int getIconWidth() Returns the width of the icon in pixels.

void paintIcon(Component comp, Graphics g,int x, int y) Paints the icon at position x, y on

the graphics context g. Additional information about the paint

operation can be provided in comp.

Swing labels are instances of the JLabel class, which extends JComponent. It can display text

and/or an icon. Some of its constructors are shown here:

JLabel(Icon i)

Label(String s)

JLabel(String s, Icon i, int align)

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 197 Object Oriented Programming

Here, s and i are the text and icon used for the label. The align argument is either LEFT, RIGHT,

CENTER, LEADING, or TRAILING. These constants are defined in the SwingConstants

interface, along with several others used by the Swing classes. The icon and text associated with

the label can be read and written by the following methods:

Icon getIcon()

String getText()

void setIcon(Icon i)

void setText(String s)

Here, i and s are the icon and text, respectively.

The following example illustrates how to create and display a label containing both an icon and

a string. The applet begins by getting its content pane. Next, an ImageIcon object is created for

the file france.gif. This is used as the second argument to the JLabel constructor. The first and

last arguments for the JLabel constructor are the label text and the alignment. Finally, the label

is added to the content pane.

import java.awt.*;

import javax.*;

/*<applet code="JLabelDemo" width=250 height=150>

</applet>

*/

public class JLabelDemo extends JApplet {

public void init() {

// Get content pane

Container contentPane = getContentPane();

// Create an icon

ImageIcon ii = new ImageIcon("france.gif");

// Create a label

JLabel jl = new JLabel("France", ii, JLabel.CENTER);

// Add label to the content pane

contentPane.add(jl);

Output:

Text Fields:

The Swing text field is encapsulated by the JTextComponent class, which extends JComponent.

It provides functionality that is common to Swing text components. One of its subclasses is

JTextField, which allows you to edit one line of text. Some of its constructors are shown here:

JTextField()

JTextField(int cols)

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 198 Object Oriented Programming

JTextField(String s, int cols)

JTextField(String s)

Here, s is the string to be presented, and cols is the number of columns in the text field.

Buttons:

Swing buttons provide features that are not found in the Button class defined by the AWT. For

example, you can associate an icon with a Swing button. Swing buttons are subclasses of the

AbstractButton class, which extends JComponent. AbstractButton contains many methods

that allow you to control the behavior of buttons, check boxes, and radio buttons. For example,

you can define different icons that are displayed for the component when it is disabled, pressed,

or selected. Another icon can be used as a rollover icon, which is displayed when the mouse is

positioned over that component.

The following are the methods that control this behavior:

void setDisabledIcon(Icon di)

void setPressedIcon(Icon pi)

void setSelectedIcon(Icon si)

void setRolloverIcon(Icon ri)

Here, di, pi, si, and ri are the icons to be used for these different conditions.

The text associated with a button can be read and written via the following methods:

String getText()

void setText(String s)

Here, s is the text to be associated with the button.

Concrete subclasses of AbstractButton generate action events when they are pressed. Listeners

register and unregister for these events via the methods shown here:

void addActionListener(ActionListener al)

void removeActionListener(ActionListener al)

Here, al is the action listener.

AbstractButton is a superclass for push buttons, check boxes, and radio buttons.

The JButton Class:

The JButton class provides the functionality of a push button. JButton allows an icon, a string,

or both to be associated with the push button. Some of its constructors are shown here:

JButton(Icon i)

JButton(String s)

JButton(String s, Icon i)

Here, s and i are the string and icon used for the button.

Check Boxes:

The JCheckBox class, which provides the functionality of a check box, is a concrete

implementation of AbstractButton. Its immediate superclass is JToggleButton, which

provides support for two-state buttons. Some of its constructors are shown here:

JCheckBox(Icon i)

JCheckBox(Icon i, boolean state)

JCheckBox(String s)

JCheckBox(String s, boolean state)

JCheckBox(String s, Icon i)

JCheckBox(String s, Icon i, boolean state)

Here, i is the icon for the button. The text is specified by s. If state is true, the check box is

initially selected. Otherwise, it is not.

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 199 Object Oriented Programming

The state of the check box can be changed via the following method:

void setSelected(boolean state)

Here, state is true if the check box should be checked.

The following example illustrates how to create an applet that displays four check boxes and a

text field. When a check box is pressed, its text is displayed in the text field. The content pane for

the JApplet object is obtained, and a flow layout is assigned as its layout manager. Next, four

check boxes are added to the content pane, and icons are assigned for the normal, rollover, and

selected states. The applet is then registered to receive item events. Finally, a text field is added

to the content pane.

When a check box is selected or deselected, an item event is generated. This is handled by

itemStateChanged(). Inside itemStateChanged(), the getItem() method gets the JCheckBox

object that generated the event. The getText() method gets the text for that check box and uses

it to set the text inside the text field.

Radio Buttons:

Radio buttons are supported by the JRadioButton class, which is a concrete implementation of

AbstractButton. Its immediate superclass is JToggleButton, which provides support for two-

state buttons. Some of its constructors are shown here:

JRadioButton(Icon i)

JRadioButton(Icon i, boolean state)

JRadioButton(String s)

JRadioButton(String s, boolean state)

JRadioButton(String s, Icon i)

JRadioButton(String s, Icon i, boolean state)

Here, i is the icon for the button. The text is specified by s. If state is true, the button is initially

selected. Otherwise, it is not.

Radio buttons must be configured into a group. Only one of the buttons in that group can be

selected at any time. For example, if a user presses a radio button that is in a group, any previously

selected button in that group is automatically deselected. The ButtonGroup class is instantiated

to create a button group. Its default constructor is invoked for this purpose. Elements are then

added to the button group via the following method:

void add(AbstractButton ab)

Here, ab is a reference to the button to be added to the group.

Combo Boxes:

Swing provides a combo box (a combination of a text field and a drop-down list) through the

JComboBox class, which extends JComponent. A combo box normally displays one entry.

However, it can also display a drop-down list that allows a user to select a different entry. You

can also type your selection into the text field. Two of JComboBox’s constructors are shown

here:

JComboBox()

JComboBox(Vector v)

Here, v is a vector that initializes the combo box.

Items are added to the list of choices via the addItem() method, whose signature is shown here:

void addItem(Object obj)

Here, obj is the object to be added to the combo box.

Tabbed Panes:

A tabbed pane is a component that appears as a group of folders in a file cabinet. Each folder has

a title. When a user selects a folder, its contents become visible. Only one of the folders may be

selected at a time. Tabbed panes are commonly used for setting configuration options.

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 200 Object Oriented Programming

Tabbed panes are encapsulated by the JTabbedPane class, which extends JComponent. We

will use its default constructor. Tabs are defined via the following method:

void addTab(String str, Component comp)

Here, str is the title for the tab, and comp is the component that should be added to the tab.

Typically, a JPanel or a subclass of it is added.

The general procedure to use a tabbed pane in an applet is outlined here:

1. Create a JTabbedPane object.

2. Call addTab() to add a tab to the pane. (The arguments to this method define the title of the

tab and the component it contains.)

3. Repeat step 2 for each tab.

4. Add the tabbed pane to the content pane of the applet.

The following example illustrates how to create a tabbed pane. The first tab is titled ―Cities‖ and

contains four buttons. Each button displays the name of a city. The second tab is titled ―Colors‖

and contains three check boxes. Each check box displays the name of a color. The third tab is

titled ―Flavors‖ and contains one combo box. This enables the user to select one of three flavors.

import javax.swing.*;

/*

<applet code="JTabbedPaneDemo" width=400 height=100>

</applet>

*/

public class JTabbedPaneDemo extends JApplet {

public void init() {

JTabbedPane jtp = new JTabbedPane();

jtp.addTab("Cities", new CitiesPanel());

jtp.addTab("Colors", new ColorsPanel());

jtp.addTab("Flavors", new FlavorsPanel());

getContentPane().add(jtp);

}

}

class CitiesPanel extends JPanel {

public CitiesPanel() {

JButton b1 = new JButton("New York");

add(b1);

JButton b2 = new JButton("London");

add(b2);

JButton b3 = new JButton("Hong Kong");

add(b3);

JButton b4 = new JButton("Tokyo");

add(b4);

}

}

class ColorsPanel extends JPanel {

public ColorsPanel() {

JCheckBox cb1 = new JCheckBox("Red");

add(cb1);

JCheckBox cb2 = new JCheckBox("Green");

add(cb2);

JCheckBox cb3 = new JCheckBox("Blue");

add(cb3);

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 201 Object Oriented Programming

}

}

class FlavorsPanel extends JPanel {

public FlavorsPanel() {

JComboBox jcb = new JComboBox();

jcb.addItem("Vanilla");

jcb.addItem("Chocolate");

jcb.addItem("Strawberry");

add(jcb);

}

}

Output:

Scroll Panes:

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 202 Object Oriented Programming

A scroll pane is a component that presents a rectangular area in which a component may be

viewed. Horizontal and/or vertical scroll bars may be provided if necessary. Scroll panes are

implemented in Swing by the JScrollPane class, which extends JComponent. Some of its

constructors are shown here:

JScrollPane(Component comp)

JScrollPane(int vsb, int hsb)

JScrollPane(Component comp, int vsb, int hsb)

Here, comp is the component to be added to the scroll pane. vsb and hsb are int constants that

define when vertical and horizontal scroll bars for this scroll pane are shown. These constants are

defined by the ScrollPaneConstants interface. Some examples of these constants are described

as follows:

Constant Description

HORIZONTAL_SCROLLBAR_ALWAYS Always provide horizontal scroll

bar

HORIZONTAL_SCROLLBAR_AS_NEEDED Provide horizontal scroll bar, if

needed

VERTICAL_SCROLLBAR_ALWAYS Always provide vertical scroll bar

VERTICAL_SCROLLBAR_AS_NEEDED Provide vertical scroll bar, if needed

Here are the steps that you should follow to use a scroll pane in an applet:

1. Create a JComponent object.

2. Create a JScrollPane object. (The arguments to the constructor specify the

component and the policies for vertical and horizontal scroll bars.)

3. Add the scroll pane to the content pane of the applet.

Trees:

A tree is a component that presents a hierarchical view of data. A user has the ability to expand

or collapse individual subtrees in this display. Trees are implemented in Swing by the JTree class,

which extends JComponent. Some of its constructors are shown here:

JTree(Hashtable ht)

JTree(Object obj[])

JTree(TreeNode tn)

JTree(Vector v)

The first form creates a tree in which each element of the hash table ht is a child node. Each

element of the array obj is a child node in the second form. The tree node tn is the root of the tree

in the third form. Finally, the last form uses the elements of vector v as child nodes.

A JTree object generates events when a node is expanded or collapsed. The

addTreeExpansionListener() and removeTreeExpansionListener() methods allow listeners

to register and unregister for these notifications. The signatures of these methods are shown here:

void addTreeExpansionListener(TreeExpansionListener tel)

void removeTreeExpansionListener(TreeExpansionListener tel)

Here, tel is the listener object.

The getPathForLocation() method is used to translate a mouse click on a specific point of the

tree to a tree path. Its signature is shown here:

TreePath getPathForLocation(int x, int y)

Here, x and y are the coordinates at which the mouse is clicked. The return value is a TreePath

object that encapsulates information about the tree node that was selected by the user.

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 203 Object Oriented Programming

The TreePath class encapsulates information about a path to a particular node in a tree. It

provides several constructors and methods. In this book, only the toString() method is used. It

returns a string equivalent of the tree path. The TreeNode interface declares methods that obtain

information about a tree node. For example, it is possible to obtain a reference to the parent

node or an enumeration of the child nodes. The MutableTreeNode interface extends

TreeNode. It declares methods that can insert and remove child nodes or change the parent

node. The DefaultMutableTreeNode class implements the MutableTreeNode interface. It

represents a node in a tree. One of its constructors is shown here:

DefaultMutableTreeNode(Object obj)

Here, obj is the object to be enclosed in this tree node. The new tree node doesn’t have a parent

or children.

To create a hierarchy of tree nodes, the add() method of DefaultMutableTreeNode can be

used. Its signature is shown here:

void add(MutableTreeNode child)

Here, child is a mutable tree node that is to be added as a child to the current node.

Tree expansion events are described by the class TreeExpansionEvent in the javax.swing.event

package. The getPath() method of this class returns a TreePath object that describes the path to

the changed node. Its signature is shown here:

TreePath getPath()

The TreeExpansionListener interface provides the following two methods:

void treeCollapsed(TreeExpansionEvent tee)

void treeExpanded(TreeExpansionEvent tee)

Here, tee is the tree expansion event. The first method is called when a subtree is hidden, and

the second method is called when a subtree becomes visible.

Here are the steps that you should follow to use a tree in an applet:

1. Create a JTree object.

2. Create a JScrollPane object. (The arguments to the constructor specify the tree

and the policies for vertical and horizontal scroll bars.)

3. Add the tree to the scroll pane.

4. Add the scroll pane to the content pane of the applet.

Tables:

A table is a component that displays rows and columns of data. You can drag the cursor on column

boundaries to resize columns. You can also drag a column to a new position. Tables are

implemented by the JTable class, which extends JComponent.One of its constructors is shown

here:

JTable(Object data[][], Object colHeads[])

Here, data is a two-dimensional array of the information to be presented, and colHeads is a one-

dimensional array with the column headings.

Here are the steps for using a table in an applet:

1. Create a JTable object.

2. Create a JScrollPane object. (The arguments to the constructor specify the table

and the policies for vertical and horizontal scroll bars.)

3. Add the table to the scroll pane.

4. Add the scroll pane to the content pane of the applet.

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 204 Object Oriented Programming

12. UNITWISE QUESTION BANK

(SUBJECTIVE & OBJECTIVE)

UNIT-I:

SUBJECTIVE:

1. List at least ten major differences between C and Java

2. Distinguish between Objects and classes

3. Write the difference between Data abstraction and data encapsulation

4. Explain about Inheritance and polymorphism

5. Explain: (a) Dynamic binding

(b) Message passing.

6. Compare and contrast overloading and overriding methods.

OBJECTIVE:

1. What is main essential feature of object oriented programming Abstraction

2. Inheritance is the property by which one object acquires the properties of another

object.

3. Having many forms is called polymorphism.

4. Static polymorphism is the polymorphism exhibited at compile time.

5. Dynamic polymorphism is the polymorphism exhibited at run time.

6. An object is an instance of a class.

7. instanceOf means object.

8. Method overloading is an example of Polymorphism.

9. Two methods with same name ,same type signature is called as method overriding.

10. Errors that occur at runtime are called as Exceptions.

UNIT-I:

SUBJECTIVE:

1. Describe the genesis of java. Also write brief overview of java

2. List and explain the control statements used in java. Also describe the syntax of the control

statements with suitable illustration

3. What is an array? Why arrays are easier to use compared to a bunch of related variables?

4. What are conventional styles for class names, method names, constants and variables?

5. Can a java run on any machine? What is needed to run java on a computer?

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 205 Object Oriented Programming

6. Explain the concept of keywords. List some java keywords.

7. (a) what is a constructor? What are its special properties?

(b) How do we invoke a constructor?

(c) What are objects? How are they created from a class?

8. (a) What is the purpose of using a method? How do you declare a method? How do you

invoke

a method?

(b) What is method overloading? Can you define two methods that have same name but

different parameter types? Can you define two methods in a class that have identical

method names and parameter profile with different return value types or different

modifier?

9. Describe the following terms:

(a) super and this

(b) final and abstract

(c) Passing parameter-call by value

(d) Overloading methods & Constructors.

10. (a) Describe the structure of a typical java program.

(b) Why do we need the import statement?

(c) What is statement? How do the java statements differ from those of C and C++?

11. (a) List the eight data types used in Java. Give examples.

(b) Write a while loop to find the smallest n such that n2 is greater than 10,000.

12. Explain the following methods of StringBuffer class and write a java program illustrating

these. Length(), capacity(), SetLength(), EnsureCapacity().

OBJECTIVE:

1. When java is compiled the code we will get Bytecode

2. Java’s byte code is platform independent

3. JVM contains an interpreter, to speed up the interpretation what is there with interpreter

JIT compiler

4. Java is a purely object oriented language

5. What is the memory size of short? 2 bytes

6. What is the memory size of short? 4 bytes

7. Characters are stored with their ASCII values.

8. Is string a class or data type? Both

9. Boolean act upon how many values? Two

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 206 Object Oriented Programming

10. Visibility of a variable is called as scope.

11. A specific element in array is accessed by its index.

12. Arrays of arrays means two dimensional arrays.

13. &&, ||, are called logical operators.

14. &,|,!, are called bitwise operators.

15. The operator used to refer a method in class is dot.

16. Which statement will terminate the application normally? System.exit(0).

17. Type conversion of two compatible java types is widening conversion.

18. A java program is complied using javac command

19. Java program is run using java command.

20. Type casting of two incompatible types is narrowing conversion.

21. Which statement is useful to return a value to a calling method? Return

22. Which statement is used to continue the next repetition of loop? Continue.

23. Executing the statements one by one is called as sequential.

24. The operator used to refer a class in package is dot.

25. Which operator dynamically allocates memory for an object? new

26. Objects are created during runtime by JVM.

27. Variables declared as final are constants.

28. Static methods can access only static variables.

29. Static methods cannot refer to this and super.

30. A class within another class is known as nested class.

31. Every string you create is actually an object of type String.

32. Objects of type string are immutable.

33. Which operator is used to concatenate two strings? + Operator

34. What is the return type of string function equals ()? boolean

35. Which method of string class is used for eliminating all leading and trailing white

Spaces? trim ()

36. Static classes are not there in java.

37. The scope of a default specifier is package scope

UNIT-I:

SUBJECTIVE:

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 207 Object Oriented Programming

1. (a) Discuss about Hybrid Inheritance with a suitable example.

(b) Discuss about Hierarchical Inheritance with a suitable example.

2. (a) Define Abstract class? Explain with a suitable example.

(b) Write a sample program to demonstrate the order of initialization of the base classes and

derived classes. Now add member objects to both the base and derived classes, and show

the order in which their initialization occurs during construction.

3. What are the types of inheritances in java? Explain each of them in detail.

4. Add a new method in the base class of Shapes. java that prints a message, but don’t override

it in the derived classes. Explain what happens. Now override it in one of the derived classes

but not the others, and explain what happens. Finally, override it in all the derived classes,

Explain in detail about each situation.

5. (a) Explain about final classes, final methods and final variables?

(b) Explain about the abstract class with example program?

6. Create a base class with an abstract print() method that is overridden in a derived class. The

overridden version of the method prints the value of an int variable defined in the derived

class. At the point of definition of this variable, give it a nonzero value. In the base-class

constructor, call this method. In main(), create an object of the derived type, and then call its

print() method. Explain the results.

OBJECTIVE:

1. Which oops concept is used for hierarchical classification? Inheritance

2. Which keyword is used to inherit a class? extends

3. Which constructor is always available to subclass? Default constructor

4. When a subclass object is created it contains the copy of super class object.

5. Private members of the super class are not available to sub class.

6. When a sub class refers to its immediate super class the keyword it uses is super.

7. Super keyword acts as that of this.

8. Multiple inheritance is not available in java.

9. Method overriding occurs when name and type signatures of two methods are

identical.

10. Abstract methods must be declared with a keyword abstract.

11. A class with one or more abstract methods is called as abstract class.

12. We cannot create objects to abstract class.

13. A class cannot be both abstract and final.

14. Which is used for methods overriding Final

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 208 Object Oriented Programming

15. Which is used for methods to prevent Inheritance Final?

16. Methods declared as final cannot be overridden.

17 Declaring a class as final declare all of its methods implicitly final

18 All classes in java are subclass of object

19. Dynamic dispatch and method overloading implements runtime polymorphism.

20. Dynamic dispatch is made at runtime.

UNIT-II:

SUBJECTIVE:

1. (a) What is interface? Write a program to demonstrate how interfaces can be extended.

(b) What is package? How do you create a package? Explain about the access protection in

packages?

2. Prove that all the methods in an interface are automatically public.

3.Create an interface with at least one method, in its own package. Create a class in a separate

package. Add a protected inner class that implements the interface. In a third package, inherit

from your class and, inside a method, return an object of the protected inner class, up casting

to the interface during the return.

4. Write a sample program to illustrate packages.

5. What is interface? How do you define an interface? Explain with a suitable example.

OBJECTIVE:

1. Which keyword is to create package? Package.

2. Package contains name spaces in which classes are stored.

3. Java uses file system directory to store packages.

4. Import can be used to access package.

5. Java uses runtime directory for packages.

6. Import is used to import a package.

7. Dot operator is used to import a package.

8. An interface is specification of method prototype.

9. All methods of interfaces are public.

10. All methods of interfaces are public and abstract by default.

11. Can we create an object to interface no?

12. Can we extend interface to another interface yes.

13. Can class implement another interface yes.

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 209 Object Oriented Programming

14. An interface can be either abstract or default.

15. Variable in an interface is implicitly final and static.

16. The method that implements interface must be public.

17. Software that implements classes is driver.

18. class files are stored in the directory with the package name when a package is created.

19. If a package name is jav.awt.image then the directory structure is java/awt/image.

20. The general form of multilevel package is Package p1[.p2[.p3]];

UNIT-III:

SUBJECTIVE:

1. (a) Give the Class hierarchy in Java related to exception handling. Briefly explain each

class.

(b) What is the necessity of exception handling? Explain exception handling taking

―divide-by-

zero‖ as an example.

2. What is Error? What is Exception? Are they totally different or related? As a programmer

3. what is the difference in handling an error and an exception. With the help of a simple

java

program explain the concepts error and exception

4. (a) Explain throws statement in Java with the help of an example program.

(b) What is the difference between throw and throws statement.

OBJECTIVE:

1. An exception is runtime error.

2. Exception Handling is the concept of oops.

3. Java exception handling is managed by 5 no of keywords.

4. Try, catch and Throw is keyword used to manage exception handling.

5. throws is a keyword used to throw exception without handling.

6. Manually throw an exception keyword is throw.

7. Throw is the exception used to handling exception handling.

8. All exception is subclass of object and Throwable.

9. Exception is the immediate super class of runtime exception class.

10. Error type of exceptions are not caught under normal circumstances by your Program.

11. The statements that are protected by try are surrounded by curly braces.

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 210 Object Oriented Programming

12. Yes we can make try statement nested.

13. How many exceptions can be thrown with throw class with put handling them More than

one.

14. Finally will execute whether or not option is thrown.

15. Finally and catch clause is optional.

16. Each try statement atleast one catch clause.

17. In java exception handling is defined in java.lang type.

18. 18.Most exceptions filled in runtime exception class are automatically available in java.

19. 19. We can create user defined exception by making subclasses to Runtime exception

class.

UNIT-IV:

SUBJECTIVE:

1. (a) What is the significance of main thread in multithreading. Explain with an example how

you can control main thread.

(b) What is the role of Sleep class in multithreading. Explain.

2. (a) why thread is called light weight task and process heavy weight task.

(b) What are the different things shared by different threads of a single process. What

are the benefits of sharing?

(c) Is multithreading suitable for all types of applications. If yes explain any such

application. If no, explain any application for which multithreading is not desired.

3. (a) With the help of an example, explain multithreading by extending thread class.

(b) Implementing Runnable interface and extending thread, which method you prefer

for multithreading and why.

4. (a) Explain how threads with different priorities execute in environment which supports

priorities and which doesn’t support priorities.

(b) what are the functions available in java related to priority.

OBJECTIVE:

1. Thread is light weight class.

2. Context switching from one process to another process is costly in process.

3. Thread shows the address space.

4. 23.Thread Based is multitasking under control of java.

5. Multiple Try Blocks is not available in java.

6. Class object raise the exception by throwing user exception.

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 211 Object Oriented Programming

UNIT-V

SUBJECTIVE:

1. (a) Why do you use frames?

(b) Explain the syntax and functionality of different methods related to Frames.

2. What are the methods supported by the following interfaces. Explain each of them

(a) ActionListener interface

(b) MouseMotionListener interface

(c) TextListener interface.

3. What are the methods supported by KeyListener interface and MouseListener Interface.

Explain each of them with examples.

4. using a Frame window, write a program to handle all mouse events?

5. (a) What is Delegation Event model? Explain it. What are its benefits?

(b) Define Event. Give examples of events. Define event handler. How it handles events.

6. Explain different event classes supported by Java.

7. Explain in detail about the following event classes:

(a) ComponentEvent

(b) ContainerEvent

(c) FocusEvent.

8. What is event source? Give examples of event sources. How events are generated. Are all

events generated by user actions? Comment on it.

OBJECTIVE:

1. Handling events is based on the delegation event model.

2. A source generates an event and sends to one or more listeners.

3. An event is an object that describes state change in source.

4. The Awt event class is defined within java.awt package.

5. Event object is super class of all events.

6. Action Event is generated when a button is pressed or menu item is selected.

7. Item Event is generated when a check box or list item is clicked.

8. The methods used to return X and Y coordinates of mouse when event occurred is int

getX (), int getY ().

9. An anonymous inner class is one that is not assigned a name.

10. AWT stands for Abstract window Tool kit.

11. The Graphics class defines a number of drawing class.

12. Lines are drawn by means of drawLine () method.

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 212 Object Oriented Programming

13. To set a change text in a label by using SetText () method.

14. To receive the current state of a checkbox we call getState () method.

15. The choice class is used to create a pop-up list of items which user may choose.

16. AWT includes multiline editor called TextArea.

17. Flow layout is the default layout manager.

18. Grid layout lays out components in a two-dimensional grid.

19. You can disable or enable a menu item by using the SetEnabled () method.

20. Menu generates events when an item of type Menu item or Check box Menu Item is

selected.

UNIT-V

SUBJECTIVE:

1. Explain the following:

(a) Creating an applet

(b) Passing parameters to applets

(c) Adding graphics and colors to applets.

2. (a) Write briefly applet display methods.

(b) Write a java program to form a calculator

3. How will you create check boxes and Choice boxes? Explain the steps in detail.

4. (a) Explain various components of User Interface.

(b) How will you arrange components on User Interface?

5. What are various JFC containers? List them according to their functionality. Explain each of

them with examples.

6. (a) In what way JList differ from JComboBox?

(b) JList does not support scrolling. Why? How this can be remedied? Explain with an

example.

7. Explain the steps involved in creating JCheckBox, JRadioButton, JButton, JLabel

8. Differentiate following with suitable examples:

(a) Frame, JFrame

(b) Applet, JApplet

(c) Menu, Jmenu.

OBJECTIVE:

1. All applets are subclass of Applet.

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 213 Object Oriented Programming

2. Applets are executed by either web browser or an applet viewer.

3. The standard applet viewer is provided by JDK .

4. Execution of an applet does not begin with at main().

5. Applet is window-based program.

6. The four methods defined by Applet are init(),start(),paint()

7. When an applet begins, the AWT calls the methods in init(),start(),paint() sequence.

8. Stop () and destroy () are called when an applet is terminated.

9. Init() method is called only once during the runtime of the applet.

10. The paint() method is called each time applet output must be redrawn.

11. The paint() method has only one parameter of type Graphics.

12. An applet writes to its window only when its update or paint() method is called by AWT

13. To retrieve a parameter from applet, use get parameter method.

14. Swing-related classes are contained in javax.string.

15. Applets that use swing must be subclasses of JApplet.

16. The content pane can be obtained by getContentPane() method

17. In swing, icons are encapsulated by ImageIcon class, which paints an icon from image.

18. A tabbed pane is a component that appears as a group of folders in file cabinet.

19. A tree is a component that presents a hierarchical view of the data.

20. We call addTab () to add a tab to the pane.

CMREC Redefining the Quality Education

II B.tech II Semester(CSE) 214 Object Oriented Programming

Sample Objective question papers:

OOPS THROUGH JAVA Objective Exam

Name: Hall Ticket No.

Answer All Questions. All Questions Carry Equal Marks.Time: 20 Min. Marks: 20.

I. Choose the correct alternative:

1. The is the mechanism that binds together code and the data it

manipulates. []

A. Encapsulation B. Inheritance C. Polymorphism D. Abstraction

2. The variables declared in interface are by default.
A. static B. final C. array D. vector

[]

.

3. The constructor that is used to duplicates an existing object is called constructor.

[]

A. parameterized B. default C. copy D. duplicate

5. Defining several methods in a single class with same name but having different number

 or types of parameters is called Method []
 A. Overloading B. Overriding C. Copying D. Defining

5. Which of the following method does not belong to String class. []

 A. length () B. compareTo () C. equals () D. strlen ()

6. A method declared as protected is not visible in. [

A. Same Package Non-subclasses. B. Different package subclasses.

C. Same Package subclasses. D. Different package Non-subclasses.

]

7. The class is a super class of all classes. [

A. Object B. Thread C. Applet D. Graphics.

]

8. If we wish to prevent inheritance then we must declare class as []

 A. public B. final C. static D. abstract

9. The package that contains all the classes for implementing graphics related

functions.[]

 A. java.lang B. java.io C. java.awt D. java.util

10. The package that support basic classes required to write java program is [
A. java.lang B. java.util C. java.io D. java.net

]

Contd….2

 A

II B.tech II Semester(CSE) 215 Object Oriented Programming

Code No: 05210301 :2: Set No. 1

II. Fill in the blanks:

11. A class for which we can’t create the object directly is

12. In java the objects are passed by the use of

13. In a class we may define number of constructors.

14. is a process by which one object acquires the properties of another object

15. The size of float variable is

16. For compilation & execution of java program we require

17. The method is used to invoke a constructor of the same class

18. Abstract class means

19. Method overriding is resolved runtime by mechanism

20. Multiple interitance in java s accomplished by feature

-oOo-

II B.tech II Semester(CSE) 216 Object Oriented Programming

OOPS THROUGH JAVA

Objective Exam

Name: Hall Ticket No.

Answer All Questions. All Questions Carry Equal Marks.Time: 20 Min. Marks: 20.

I. Choose the correct alternative:

1. Defining several methods in a single class with same name but having different number or types

of parameters is called Method []

A. Overloading B. Overriding C. Copying D. Defining

2. Which of the following method does not belong to String class. [

A. length () B. compareTo () C. equals () D. strlen ()

]

3. A method declared as protected is not visible in. [

A. Same Package Non-subclasses. B. Different package subclasses.

C. Same Package subclasses. D. Different package Non-subclasses.

]

4. The class is a super class of all classes. [

A. Object B. Thread C. Applet D. Graphics.

]

5. If we wish to prevent inheritance then we must declare class as [

A. public B. final C. static D. abstract

]

6. The package that contains all the classes for implementing graphics related functions.[

A. java.lang B. java.io C. java.awt D. java.util

]

7. The package that support basic classes required to write java program is [

A. java.lang B. java.util C. java.io D. java.net

]

8. The is the mechanism that binds together code and the data it manipulates. [

A. Encapsulation B. Inheritance C. Polymorphism D. Abstraction

]

9. The variables declared in interface are by default. []

A. static B. final C. array D. vector

.

10. The constructor that is used to duplicates an existing object is called constructor.

[]

A. parameterized B. default C. copy D. duplicate

Contd…2

Code No: 05210301 :2: Set No. 2

II. Fill in the blanks:

 A

II B.tech II Semester(CSE) 217 Object Oriented Programming

11. is a process by which one object acquires the properties of another object

12. The size of float variable is

13. For compilation & execution of java program we require

14. The method is used to invoke a constructor of the same class

15. Abstract class means

16. Method overriding is resolved runtime by mechanism

17. Multiple interitance in java s accomplished by feature

18. A class for which we can’t create the object directly is

19. In java the objects are passed by the use of

20. In a class we may define number of constructors.

-oOo-

II B.tech II Semester(CSE) 218 Object Oriented Programming

OOPS THROUGH JAVA
Objective Exam

Name: Hall Ticket No.

Answer All Questions. All Questions Carry Equal Marks.Time: 20 Min. Marks: 20.

I. Choose the correct alternative:

1. A method declared as protected is not visible in. []

A. Same Package Non-subclasses. B. Different package subclasses.

C. Same Package subclasses. D. Different package Non-subclasses.

2. The class is a super class of all classes. []

A. Object B. Thread C. Applet D. Graphics.

3. If we wish to prevent inheritance then we must declare class as []

A. public B. final C. static D. abstract

4. The package that contains all the classes for implementing graphics related functions.[]

A. java.lang B. java.io C. java.awt D. java.util

5. The package that support basic classes required to write java program is []

A. java.lang B. java.util C. java.io D. java.net

6. The is the mechanism that binds together code and the data it manipulates. []

A. Encapsulation B. Inheritance C. Polymorphism D. Abstraction

7. The variables declared in interface are by default. []

A. static B. final C. array D. vector

.

8. The constructor that is used to duplicates an existing object is called constructor.

[]

A. parameterized B. default C. copy D. duplicate

9. Defining several methods in a single class with same name but having different number or types

of parameters is called Method []

A. Overloading B. Overriding C. Copying D. Defining

10. Which of the following method does not belong to String class. []

A. length () B. compareTo () C. equals () D. strlen ()

Contd…2

 A

II B.tech II Semester(CSE) 219 Object Oriented Programming

Code No: 05210301 :2: Set No. 3

II. Fill in the blanks:

11. For compilation & execution of java program we require

12. The method is used to invoke a constructor of the same class

13. Abstract class means

14. Method overriding is resolved runtime by mechanism

15. Multiple interitance in java s accomplished by feature

16. A class for which we can’t create the object directly is

17. In java the objects are passed by the use of

18. In a class we may define number of constructors.

19. is a process by which one object acquires the properties of another object

20. The size of float variable is

-oOo-

II B.tech II Semester(CSE) 220 Object Oriented Programming

OOPS THROUGH JAVA

Objective Exam

Name: Hall Ticket No.

Answer All Questions. All Questions Carry Equal Marks.Time: 20 Min. Marks: 20.

I. Choose the correct alternative:

1. If we wish to prevent inheritance then we must declare class as []

A. public B. final C. static D. abstract

2. The package that contains all the classes for implementing graphics related functions.[]

A. java.lang B. java.io C. java.awt D. java.util

3. The package that support basic classes required to write java program is []

A. java.lang B. java.util C. java.io D. java.net

4. The is the mechanism that binds together code and the data it manipulates. []

A. Encapsulation B. Inheritance C. Polymorphism D. Abstraction

5. The variables declared in interface are by default. []

A. static B. final C. array D. vector

.

6. The constructor that is used to duplicates an existing object is called constructor.

[]

A. parameterized B. default C. copy D. duplicate

7. Defining several methods in a single class with same name but having different number or types

of parameters is called Method []

A. Overloading B. Overriding C. Copying D. Defining

8. Which of the following method does not belong to String class. []

A. length () B. compareTo () C. equals () D. strlen ()

9. A method declared as protected is not visible in. []

A. Same Package Non-subclasses. B. Different package subclasses.
C. Same Package subclasses. D. Different package Non-subclasses.

10. The class is a super class of all classes. []

A. Object B. Thread C. Applet D. Graphics.

Contd…2

 A

II B.tech II Semester(CSE) 221 Object Oriented Programming

Code No: 05210301 :2: Set No. 4

II. Fill in the blanks:

11. Abstract class means

12. Method overriding is resolved runtime by mechanism

13. Multiple interitance in java s accomplished by feature

14. A class for which we can’t create the object directly is

15. In java the objects are passed by the use of

16. In a class we may define number of constructors.

17. is a process by which one object acquires the properties of another object

18. The size of float variable is

19. For compilation & execution of java program we require

20. The method is used to invoke a constructor of the same class

II B.tech II Semester(CSE) 222 Object Oriented Programming

Code No: 05210301 Set No. 1

OOPS THROUGH JAVA

Keys

I. Choose the correct alternative:

1. a

2. b

3. c

4. a

5. d

6. d

7. a

8. b

9. c

10. a

II. Fill in the blanks:

11. Abstract class

12. call by reference

13. many

14. inheritance

15. 4 bytes

16. compiler & interpreter

17. new

18. A class that cannot be instantiated

19. dynamic method dispatch

20. interface

^*^*^

II B.tech II Semester(CSE) 223 Object Oriented Programming

Code No: 05210301 Set No. 1

OOPS THROUGH JAVA Objective Exam

Name: Hall Ticket No.

Answer All Questions. All Questions Carry Equal Marks.Time: 20 Min. Marks: 20.

I. Choose the correct alternative:

1. Which is a checked Runtime Exception? []

A. NullPointerException B. InterruptedException

C. ArithematicException D. ArrayIndexOutOfBoundsException

2. Which of the following method is not defined by MouseListener Interface. []

A. mouseClicked B. mouseDragged C. mouseReleased D. mouseExited

3. Which of the following layout is used as default layout manager? []

A. BorderLayout B. CardLayout C. FlowLayout D. GridLayout

4. The following method is called when we leave a web page that contains an applet []

A. pause() B. stop() C. destroy() D. hide()

5. Which of the following method doesn’t belong to Thread. []

A. isAlive B. join C. sleep D. wake

6. Which event is generated when a scrollbar is manipulated? []

A. Item Event B. Adjustment Event C. Check Event D. Text Event

7. Which block following will execute whether or not an exception is thrown? []

A. Try B. Catch C. Throw D. Finally

8. Which of the following is the class not used networking. []

A. DatagramPacket B. DatagramSocket C. InetAddress D. HTTPAddress

9. Which of the following is the valid priority we can use for thread? []

A. MIN_PRIORITY B. MINIMUM_PRIORITY

C. LOW_PRIORITY D. ZERO_PRIORITY

10. Which listener interface is needed in handling TextField? []

A. ActionListener B. ItemListener C. TextListener D. InputListener

Cont…2

 A

II B.tech II Semester(CSE) 224 Object Oriented Programming

Code No: 05210301 :2: Set No. 1

II. Fill in the blanks:

11. is used to connect Java’s I/O system to other programs.

12. The allows us to pass parameters to the Applet through HTML page.

13. TCP/IP is used to implement connection.

14. The class EventObject is defined in package.

15. The function can be used to find IP address of the host machine.

16. The fundamental class of Java swing JApplet extends class.

17. BorderLayout manager divides window in to areas.

18. A try block may have number of catch block(s).

19. To select or to change the font we have to use method.

20. At the top of the AWT hierarchy is the class.

-oOo-

Name: Hall Ticket No.

Answer All Questions. All Questions Carry Equal Marks.Time: 20 Min. Marks: 20.

I. Choose the correct alternative:

1. The following method is called when we leave a web page that contains an applet []

 A. pause() B. stop() C. destroy() D. hide()

2. Which of the following method doesn’t belong to Thread.

A. isAlive B. join C. sleep D. wake

[]

3. Which event is generated when a scrollbar is manipulated?

A. Item Event B. Adjustment Event C. Check Event D. Text Event

[]

4. Which block following will execute whether or not an exception is thrown?

A. Try B. Catch C. Throw D. Finally

[]

5. Which of the following is the class not used networking.

A. DatagramPacket B. DatagramSocket C. InetAddress D. HTTPAddress

[]

6. Which of the following is the valid priority we can use for thread? []

A. MIN_PRIORITY B. MINIMUM_PRIORITY

C. LOW_PRIORITY D. ZERO_PRIORITY

7. Which listener interface is needed in handling TextField? []

A. ActionListener B. ItemListener C. TextListener D. InputListener

8. Which is a checked Runtime Exception? []

A. NullPointerException B. InterruptedException

C. ArithematicException D. ArrayIndexOutOfBoundsException

9. Which of the following method is not defined by MouseListener Interface. []

A. mouseClicked B. mouseDragged C. mouseReleased D. mouseExited

10. Which of the following layout is used as default layout manager? []

A. BorderLayout B. CardLayout C. FlowLayout D. GridLayout

Cont…2

 A

Code No: 05210301 :2: Set No. 2

II. Fill in the blanks:

11. The class EventObject is defined in package.

12. The function can be used to find IP address of the host machine.

13. The fundamental class of Java swing JApplet extends class.

14. BorderLayout manager divides window in to areas.

15. A try block may have number of catch block(s).

16. To select or to change the font we have to use method.

17. At the top of the AWT hierarchy is the class.

18. is used to connect Java’s I/O system to other programs

19. The allows us to pass parameters to the Applet through HTML page.

20. TCP/IP is used to implement connection

-oOo-

OOPS THROUGH JAVA Objective Exam

Name: Hall Ticket No.

Answer All Questions. All Questions Carry Equal Marks.Time: 20 Min. Marks: 20.

I. Choose the correct alternative:

1. Which event is generated when a scrollbar is manipulated? []

A. Item Event B. Adjustment Event C. Check Event D. Text Event

2. Which block following will execute whether or not an exception is thrown? []

A. Try B. Catch C. Throw D. Finally

3. Which of the following is the class not used networking. []

A. DatagramPacket B. DatagramSocket C. InetAddress D. HTTPAddress

4. Which of the following is the valid priority we can use for thread? []

A. MIN_PRIORITY B. MINIMUM_PRIORITY

C. LOW_PRIORITY D. ZERO_PRIORITY

5. Which listener interface is needed in handling TextField? []

A. ActionListener B. ItemListener C. TextListener D. InputListener

6. Which is a checked Runtime Exception? []

A. NullPointerException B. InterruptedException

C. ArithematicException D. ArrayIndexOutOfBoundsException

7. Which of the following method is not defined by MouseListener Interface. []

A. mouseClicked B. mouseDragged C. mouseReleased D. mouseExited

8. Which of the following layout is used as default layout manager? []

A. BorderLayout B. CardLayout C. FlowLayout D. GridLayout

9. The following method is called when we leave a web page that contains an applet []

A. pause() B. stop() C. destroy() D. hide()

10. Which of the following method doesn’t belong to Thread. []

A. isAlive B. join C. sleep D. wake

Cont…2

 A

Code No: 05210301 :2: Set No. 3

II. Fill in the blanks:

11. The fundamental class of Java swing JApplet extends class.

12. BorderLayout manager divides window in to areas.

13. A try block may have number of catch block(s).

14. To select or to change the font we have to use method.

15. At the top of the AWT hierarchy is the class.

16. is used to connect Java’s I/O system to other programs.

17. The allows us to pass parameters to the Applet through HTML page.

18. TCP/IP is used to implement connection.

19. The class EventObject is defined in package.

20. The function can be used to find IP address of the host machine.

-oOo-

Code No: 05210301 Set No. 4
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

IV B.Tech. I Sem., II Mid-Term Examinations, Oct / Nov. – 2009
OOPS THROUGH JAVA

Objective Exam

Name: Hall Ticket No.

Answer All Questions. All Questions Carry Equal Marks.Time: 20 Min. Marks: 20.

I. Choose the correct alternative:

1. Which of the following is the class not used networking. []

A. DatagramPacket B. DatagramSocket C. InetAddress D. HTTPAddress

2. Which of the following is the valid priority we can use for thread? []

A. MIN_PRIORITY B. MINIMUM_PRIORITY

C. LOW_PRIORITY D. ZERO_PRIORITY

3. Which listener interface is needed in handling TextField? []

A. ActionListener B. ItemListener C. TextListener D. InputListener

4. Which is a checked Runtime Exception? []

A. NullPointerException B. InterruptedException

C. ArithematicException D. ArrayIndexOutOfBoundsException

5. Which of the following method is not defined by MouseListener Interface. []

A. mouseClicked B. mouseDragged C. mouseReleased D. mouseExited

6. Which of the following layout is used as default layout manager? []

A. BorderLayout B. CardLayout C. FlowLayout D. GridLayout

7. The following method is called when we leave a web page that contains an applet []

A. pause() B. stop() C. destroy() D. hide()

8. Which of the following method doesn’t belong to Thread. []

A. isAlive B. join C. sleep D. wake

9. Which event is generated when a scrollbar is manipulated? []

A. Item Event B. Adjustment Event C. Check Event D. Text Event

10. Which block following will execute whether or not an exception is thrown? []

A. Try B. Catch C. Throw D. Finally

Cont…2

 A

Code No: 05210301 :2: Set No. 4

II. Fill in the blanks:

11. A try block may have number of catch block(s).

12. To select or to change the font we have to use method.

13. At the top of the AWT hierarchy is the class.

14. is used to connect Java’s I/O system to other programs.

15. The allows us to pass parameters to the Applet through HTML page.

16. TCP/IP is used to implement connection.

17. The class EventObject is defined in package.

18. The function can be used to find IP address of the host machine.

19. The fundamental class of Java swing JApplet extends class.

20. BorderLayout manager divides window in to areas.

-oOo-

Code No: 05210301 Set No. 1

OOPS THROUGH JAVA I.

Choose the correct alternative:

1. b

2. b

3. c

4. b

5. d

6. b

7. d

8. d

9. a

10. a

II Fill in the blanks:

11. Socket

12. PARAM

13. Bi-Directional

14. java.util

15. getHostAddress()

16. Applet

17. 5

18. any

19. setFont()

20. Component

-oOo-

CMR Institute of Technology Redefining Quality Education

II B.TECH II SEM OOP Course File

ADD-ON CONTENT

JDBC PROGRAMMING

Working with leaders in the database field, JavaSoft developed a single API for database

access--JDBC. As part of this process, they kept three main goals in mind:

 JDBC should be an SQL-level API.

 JDBC should capitalize on the experience of existing database APIs.

 JDBC should be simple.

An SQL-level API means that JDBC allows us to construct SQL statements and embed them

inside Java API calls. In short, you are basically using SQL. But JDBC lets you smoothly

translate between the world of the database and the world of the Java application. Your

results from the database, for instance, are returned as Java variables, and access problems

get thrown as exceptions. Later on in the book, we go a step further and talk about how we

can completely hide the existence of the database from a Java application using a database

class library.

Because of the confusion caused by the proliferation of proprietary database access APIs, the

idea of a universal database access API to solve this problem is not a new one. In fact,

JavaSoft drew upon the successful aspects of one such API, Open DataBase Connectivity

(ODBC). ODBC was developed to create a single standard for database access in the

Windows environment. Although the industry has accepted ODBC as the primary means of

talking to databases in Windows, it does not translate well into the Java world. First of all,

ODBC is a C API that requires intermediate APIs for other languages. But even for C

developers, ODBC has suffered from an overly complex design that has made its transition

outside of the controlled Windows environment a failure. ODBC's complexity arises from the

fact that complex, uncommon tasks are wrapped up in the API with its simpler and more

common functionality. In other words, in order for you to understand a little of ODBC, you

have to understand a lot.

In addition to ODBC, JDBC is heavily influenced by existing database programming APIs

such as X/OPEN SQL Call Level Interface. JavaSoft wanted to re-use the key abstractions

from these APIs, which would ease acceptance by database vendors and capitalize on the

existing knowledge capital of ODBC and SQL CLI developers. In addition, JavaSoft also

realized that deriving an API from existing ones can provide quick development of solutions

for database engines that support the old protocols. Specifically, JavaSoft worked in parallel

with Intersolv to create an ODBC bridge that maps JDBC calls to ODBC calls, thus giving

Java applications access to any database management system (DBMS) that supports ODBC.

JDBC attempts to remain as simple as possible while providing developers with maximum

flexibility. A key criterion employed by JavaSoft is simply asking whether database access

applications read well. The simple and common tasks use simple interfaces, while more

uncommon or bizarre tasks are enabled through extra interfaces. For example, three interfaces

handle a vast majority of database access. JDBC nevertheless provides several other

interfaces for handling more complex and unusual tasks.

CMR Institute of Technology Redefining Quality Education

II B.TECH II SEM OOP Course File

THE STRUCTURE OF JDBC

JDBC accomplishes its goals through a set of Java interfaces, each implemented differently

by individual vendors. The set of classes that implement the JDBC interfaces for a particular

database engine is called a JDBC driver. In building a database application, you do not have

to think about the implementation of these underlying classes at all; the whole point of JDBC

is to hide the specifics of each database and let you worry about just your application. Figure

4-1 shows the JDBC classes and interfaces.

Figure 4-1. The classes and interfaces of java.sql, the JDBC API package

If you think about a database query for any database engine, it requires you to connect to the

database, issue your SELECT statement, and process the result set. In Example 4-1, we have

the full code listing for a simple SELECT application from the Imaginary JDBC Driver for

mSQL.[1] I wrote this driver for the Center for Imaginary Environments

(http://www.imaginary.com), which is a non-commercial organization that promotes the

development of virtual environment technologies like muds. This application is a single class

that gets all of the rows from a table in an mSQL database located on my Sun box. First, it

connects to the database by getting a database connection under my user id, borg, from the

JDBC DriverManager class. It uses that database connection to create a Statement object that

performs the SELECT query. A ResultSet object then provides the application with the key

and val fields from the t_test table.

JDBC SERVLET PROGRAMMING

http://oreilly.com/catalog/javadata/chapter/ch04.html#12883
http://oreilly.com/catalog/javadata/chapter/ch04.html#12883
http://oreilly.com/catalog/javadata/chapter/ch04.html#11595
http://oreilly.com/catalog/javadata/chapter/ch04.html#footnote-1
http://www.imaginary.com/

CMR Institute of Technology Redefining Quality Education

II B.TECH II SEM OOP Course File

The Java Servlet API, introduced as the first standard extension to Java, provides a generic

mechanism to extend the functionality of any kind of server. Servlets are most commonly

used, however, to extend Web servers, performing tasks traditionally handled by CGI

programs. Web servers that can support servlets include: Apache, Netscape's FastTrack and

Enterprise Servers, Microsoft's IIS, O'Reilly's WebSite, and JavaSoft's Java Web Server.

The beauty of servlets is that they execute within the Web server's process space and they

persist between invocations. This gives servlets tremendous performance benefits over CGI

programs. Yet because they're written in Java, servlets are far less likely to crash a Web

server than a C-based NSAPI or ISAPI extension. Servlets have full access to the various

Java APIs and to third-party component classes, making them ideal for use in communicating

with applets, databases, and RMI servers. Plus, servlets are portable between operating

systems and between servers -- with servlets you can "write once, serve everywhere."

Java Servlet Programming covers everything you need to know to write effective servlets

and includes numerous examples that you can use as the basis for your own servlets. The

book explains the servlet life cycle, showing how you can use servlets to maintain state

information effortlessly. It also describes how to serve dynamic Web content, including both

HTML pages and multimedia data. Finally, it explores more advanced topics like integrated

session tracking, efficient database connectivity using JDBC, applet-servlet communication,

inter-servlet communication, and internationalization.

PACKAGE JAVA.SQL

Provides the API for accessing and processing data stored in a data source (usually a

relational database) using the JavaTM programming language.

See:

Description

Interface Summary

Array
The mapping in the Java programming language for the SQL type

ARRAY.

Blob
The representation (mapping) in the JavaTM programming language of

an SQL BLOB value.

CallableStatement The interface used to execute SQL stored procedures.

Clob
The mapping in the JavaTM programming language for the SQL CLOB

type.

Connection A connection (session) with a specific database.

DatabaseMetaData Comprehensive information about the database as a whole.

http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/package-summary.html#package_description
http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/Array.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/Blob.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/CallableStatement.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/Clob.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/Connection.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/DatabaseMetaData.html

CMR Institute of Technology Redefining Quality Education

II B.TECH II SEM OOP Course File

Driver The interface that every driver class must implement.

ParameterMetaData
An object that can be used to get information about the types and

properties of the parameters in a PreparedStatement object.

PreparedStatement An object that represents a precompiled SQL statement.

Ref
The mapping in the Java programming language of an SQL REF value,

which is a reference to an SQL structured type value in the database.

ResultSet
A table of data representing a database result set, which is usually

generated by executing a statement that queries the database.

ResultSetMetaData
An object that can be used to get information about the types and

properties of the columns in a ResultSet object.

Savepoint
The representation of a savepoint, which is a point within the current

transaction that can be referenced from the Connection.rollback method.

SQLData
The interface used for the custom mapping of an SQL user-defined type

(UDT) to a class in the Java programming language.

SQLInput
An input stream that contains a stream of values representing an

instance of an SQL structured type or an SQL distinct type.

SQLOutput
The output stream for writing the attributes of a user-defined type back

to the database.

Statement
The object used for executing a static SQL statement and returning the

results it produces.

Struct
The standard mapping in the Java programming language for an SQL

structured type.

Class Summary

Date
A thin wrapper around a millisecond value that allows JDBC to identify

this as an SQL DATE value.

DriverManager

The basic service for managing a set of JDBC drivers.

NOTE: The DataSource interface, new in the JDBC 2.0 API, provides

another way to connect to a data source.

http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/Driver.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/ParameterMetaData.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/PreparedStatement.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/Ref.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/ResultSet.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/ResultSetMetaData.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/Savepoint.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/SQLData.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/SQLInput.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/SQLOutput.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/Statement.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/Struct.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/Date.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/DriverManager.html

CMR Institute of Technology Redefining Quality Education

II B.TECH II SEM OOP Course File

DriverPropertyInfo Driver properties for making a connection.

SQLPermission

The permission for which the SecurityManager will check when code

that is running in an applet calls the DriverManager.setLogWriter

method or the DriverManager.setLogStream (deprecated) method.

Time
A thin wrapper around the java.util.Date class that allows the JDBC API

to identify this as an SQL TIME value.

Timestamp
A thin wrapper around java.util.Date that allows the JDBC API to

identify this as an SQL TIMESTAMP value.

Types
The class that defines the constants that are used to identify generic SQL

types, called JDBC types.

Exception Summary

BatchUpdateException
An exception thrown when an error occurs during a batch update

operation.

DataTruncation

An exception that reports a DataTruncation warning (on reads) or

throws a DataTruncation exception (on writes) when JDBC

unexpectedly truncates a data value.

SQLException
An exception that provides information on a database access error or

other errors.

SQLWarning An exception that provides information on database access warnings.

PACKAGE JAVA.SQL DESCRIPTION

Provides the API for accessing and processing data stored in a data source (usually a

relational database) using the JavaTM programming language. This API includes a framework

whereby different drivers can be installed dynamically to access different data sources.

Although the JDBCTM API is mainly geared to passing SQL statements to a database, it

provides for reading and writing data from any data source with a tabular format. The

reader/writer facility, available through the javax.sql.RowSet group of interfaces, can be

customized to use and update data from a spread sheet, flat file, or any other tabular data

source.

WHAT THE JDBCTM 3.0 API INCLUDES

http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/DriverPropertyInfo.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/SQLPermission.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/Time.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/Timestamp.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/Types.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/BatchUpdateException.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/DataTruncation.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/SQLException.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/SQLWarning.html

CMR Institute of Technology Redefining Quality Education

II B.TECH II SEM OOP Course File

The JDBCTM 3.0 API includes both the java.sql package, referred to as the JDBC core API,

and the javax.sql package, referred to as the JDBC Optional Package API. This complete

JDBC API is included in the JavaTM 2 SDK, Standard Edition (J2SETM), version 1.4. The

javax.sql package extends the functionality of the JDBC API from a client-side API to a

server-side API, and it is an essential part of the JavaTM 2 SDK, Enterprise Edition (J2EETM)

technology. (Note that the J2EE platform also includes the complete JDBC API; features new

in the JDBC 3.0 API are included in the J2EE version 1.3).

VERSIONS

The JDBC 3.0 API incorporates all of the previous JDBC API versions:

 The JDBC 2.1 core API

 The JDBC 2.0 Optional Package API

(Note that the JDBC 2.1 core API and the JDBC 2.0 Optional Package API together

are referred to as the JDBC 2.0 API.)

 The JDBC 1.2 API

 The JDBC 1.0 API

Classes, interfaces, methods, fields, constructors, and exceptions have the following "since"

tags that indicate when they were introduced into the Java platform. When these "since" tags

are used in JavadocTM comments for the JDBC API, they indicate the following:

 Since 1.4 -- new in the JDBC 3.0 API and part of the J2SE platform, version 1.4

 Since 1.2 -- new in the JDBC 2.0 API and part of the J2SE platform, version 1.2

 Since 1.1 or no "since" tag -- in the original JDBC 1.0 API and part of the JDKTM,

version 1.1

NOTE: Many of the new features are optional; consequently, there is some variation in

drivers and the features they support. Always check your driver's documentation to see

whether it supports a feature before you try to use it.

NOTE: The class SQLPermission was added in the JavaTM 2 SDK, Standard Edition, version

1.3 release. This class is used to prevent unauthorized access to the logging stream associated

with the DriverManager, which may contain information such as table names, column data,

and so on.

WHAT THE JAVA.SQL PACKAGE CONTAINS

The java.sql package contains API for the following:

 Making a connection with a database via the DriverManager facility

o DriverManager class -- makes a connection with a driver
o SQLPermission class -- provides permission when code running within a

Security Manager, such as an applet, attempts to set up a logging stream
through the DriverManager

o Driver interface -- provides the API for registering and connecting drivers

based on JDBC technology ("JDBC drivers"); generally used only by the

DriverManager class

CMR Institute of Technology Redefining Quality Education

II B.TECH II SEM OOP Course File

o DriverPropertyInfo class -- provides properties for a JDBC driver; not used by
the general user

 Sending SQL statements to a database

o Statement -- used to send basic SQL statements
o PreparedStatement -- used to send prepared statements or basic SQL

statements (derived from Statement)

o CallableStatement -- used to call database stored procedures (derived from
PreparedStatement)

o Connection interface -- provides methods for creating statements and
managing connections and their properties

o Savepoint -- provides savepoints in a transaction

 Retrieving and updating the results of a query

o ResultSet interface
 Standard mappings for SQL types to classes and interfaces in the Java programming

language

o Array interface -- mapping for SQL ARRAY

o Blob interface -- mapping for SQL BLOB

o Clob interface -- mapping for SQL CLOB

o Date class -- mapping for SQL DATE

o Ref interface -- mapping for SQL REF

o Struct interface -- mapping for SQL STRUCT

o Time class -- mapping for SQL TIME

o Timestamp class -- mapping for SQL TIMESTAMP

o Types class -- provides constants for SQL types
 Custom mapping an SQL user-defined type (UDT) to a class in the Java programming

language
o SQLData interface -- specifies the mapping of a UDT to an instance of this

class

o SQLInput interface -- provides methods for reading UDT attributes from a
stream

o SQLOutput interface -- provides methods for writing UDT attributes back to a
stream

 Metadata

o DatabaseMetaData interface -- provides information about the database
o ResultSetMetaData interface -- provides information about the columns of a

ResultSet object

o ParameterMetaData interface -- provides information about the parameters to
PreparedStatement commands

 Exceptions

o SQLException -- thrown by most methods when there is a problem accessing
data and by some methods for other reasons

o SQLWarning -- thrown to indicate a warning

o DataTruncation -- thrown to indicate that data may have been truncated
o BatchUpdateException -- thrown to indicate that not all commands in a batch

update executed successfully

JAVA.SQL AND JAVAX.SQL FEATURES INTRODUCED IN THE JDBC 3.0 API

 Pooled statements -- reuse of statements associated with a pooled connection

 Savepoints -- allow a transaction to be rolled back to a designated savepoint

CMR Institute of Technology Redefining Quality Education

II B.TECH II SEM OOP Course File

 Properties defined for ConnectionPoolDataSource -- specify how connections are to

be pooled

 Metadata for parameters of a PreparedStatement object

 Ability to retrieve values from automatically generated columns

 Ability to have multiple ResultSet objects returned from CallableStatement objects

open at the same time

 Ability to identify parameters to CallableStatement objects by name as well as by

index

 ResultSet holdability -- ability to specify whether cursors should be held open or

closed at the end of a transaction

 Ability to retrieve and update the SQL structured type instance that a Ref object

references

 Ability to programmatically update BLOB, CLOB, ARRAY, and REF values.

 Addition of the java.sql.Types.DATALINK data type -- allows JDBC drivers access

to objects stored outside a data source

 Addition of metadata for retrieving SQL type hierarchies

JAVA.SQL FEATURES INTRODUCED IN THE JDBC 2.1 CORE API

 Scrollable result sets--using new methods in the ResultSet interface that allow the

cursor to be moved to a particular row or to a position relative to its current position

 Batch updates

 Programmatic updates--using ResultSet updater methods

 New data types--interfaces mapping the SQL3 data types

 Custom mapping of user-defined types (UDTs)

 Miscellaneous features, including performance hints, the use of character streams, full

precision for java.math.BigDecimal values, additional security, and support for time

zones in date, time, and timestamp values.

JAVAX.SQL FEATURES INTRODUCED IN THE JDBC 2.0 OPTIONAL PACKAGE API

 The DataSource interface as a means of making a connection. The Java Naming and

Directory InterfaceTM (JNDI) is used for registering a DataSource object with a

naming service and also for retrieving it.

 Pooled connections -- allowing connections to be used and reused

 Distributed transactions -- allowing a transaction to span diverse DBMS servers

 RowSet technology -- providing a convenient means of handling and passing data

CUSTOM MAPPING OF UDTS

A user-defined type (UDT) defined in SQL can be mapped to a class in the Java

programming language. An SQL structured type or an SQL DISTINCT type are the UDTs

that may be custom mapped. The following three steps set up a custom mapping:

1. Defining the SQL structured type or DISTINCT type in SQL
2. Defining the class in the Java programming language to which the SQL UDT will be

mapped. This class must implement the SQLData interface.

3. Making an entry in a Connection object's type map that contains two things:

o the fully-qualified SQL name of the UDT

CMR Institute of Technology Redefining Quality Education

II B.TECH II SEM OOP Course File

o the Class object for the class that implements the SQLData interface

When these are in place for a UDT, calling the methods ResultSet.getObject or

CallableStatement.getObject on that UDT will automatically retrieve the custom mapping for
it. Also, the PreparedStatement.setObject method will automatically map the object back to

its SQL type to store it in the data source.

PACKAGE SPECIFICATION

 Specification of the JDBC 3.0 API

PACKAGE JAVAX.SERVLET

The javax.servlet package contains a number of classes and interfaces that describe and

define the contracts between a servlet class and the runtime environment provided for an

instance of such a class by a conforming servlet container.

See:

Description

Interface Summary

Filter

A filter is an object that performs filtering tasks on either

the request to a resource (a servlet or static content), or on

the response from a resource, or both.

FilterChain

A FilterChain is an object provided by the servlet container

to the developer giving a view into the invocation chain of a

filtered request for a resource.

FilterConfig
A filter configuration object used by a servlet container to

pass information to a filter during initialization.

RequestDispatcher

Defines an object that receives requests from the client and

sends them to any resource (such as a servlet, HTML file,

or JSP file) on the server.

Servlet Defines methods that all servlets must implement.

ServletConfig
A servlet configuration object used by a servlet container to

pass information to a servlet during initialization.

ServletContext

Defines a set of methods that a servlet uses to communicate

with its servlet container, for example, to get the MIME

type of a file, dispatch requests, or write to a log file.

http://java.sun.com/products/jdbc/download.html
http://docs.oracle.com/javaee/5/api/javax/servlet/package-summary.html#package_description
http://docs.oracle.com/javaee/5/api/javax/servlet/Filter.html
http://docs.oracle.com/javaee/5/api/javax/servlet/FilterChain.html
http://docs.oracle.com/javaee/5/api/javax/servlet/FilterConfig.html
http://docs.oracle.com/javaee/5/api/javax/servlet/RequestDispatcher.html
http://docs.oracle.com/javaee/5/api/javax/servlet/Servlet.html
http://docs.oracle.com/javaee/5/api/javax/servlet/ServletConfig.html
http://docs.oracle.com/javaee/5/api/javax/servlet/ServletContext.html

CMR Institute of Technology Redefining Quality Education

II B.TECH II SEM OOP Course File

ServletContextAttributeListener

Implementations of this interface receive notifications of

changes to the attribute list on the servlet context of a web

application.

ServletContextListener

Implementations of this interface receive notifications about

changes to the servlet context of the web application they

are part of.

ServletRequest
Defines an object to provide client request information to a

servlet.

ServletRequestAttributeListener

A ServletRequestAttributeListener can be implemented by

the developer interested in being notified of request

attribute changes.

ServletRequestListener

A ServletRequestListener can be implemented by the

developer interested in being notified of requests coming in

and out of scope in a web component.

ServletResponse
Defines an object to assist a servlet in sending a response to

the client.

SingleThreadModel
Deprecated. As of Java Servlet API 2.4, with no direct

replacement.

Class Summary

GenericServlet Defines a generic, protocol-independent servlet.

ServletContextAttributeEvent
This is the event class for notifications about changes to the

attributes of the servlet context of a web application.

ServletContextEvent
This is the event class for notifications about changes to the

servlet context of a web application.

ServletInputStream

Provides an input stream for reading binary data from a client

request, including an efficient readLine method for reading

data one line at a time.

ServletOutputStream
Provides an output stream for sending binary data to the

client.

ServletRequestAttributeEvent This is the event class for notifications of changes to the

http://docs.oracle.com/javaee/5/api/javax/servlet/ServletContextAttributeListener.html
http://docs.oracle.com/javaee/5/api/javax/servlet/ServletContextListener.html
http://docs.oracle.com/javaee/5/api/javax/servlet/ServletRequest.html
http://docs.oracle.com/javaee/5/api/javax/servlet/ServletRequestAttributeListener.html
http://docs.oracle.com/javaee/5/api/javax/servlet/ServletRequestListener.html
http://docs.oracle.com/javaee/5/api/javax/servlet/ServletResponse.html
http://docs.oracle.com/javaee/5/api/javax/servlet/SingleThreadModel.html
http://docs.oracle.com/javaee/5/api/javax/servlet/GenericServlet.html
http://docs.oracle.com/javaee/5/api/javax/servlet/ServletContextAttributeEvent.html
http://docs.oracle.com/javaee/5/api/javax/servlet/ServletContextEvent.html
http://docs.oracle.com/javaee/5/api/javax/servlet/ServletInputStream.html
http://docs.oracle.com/javaee/5/api/javax/servlet/ServletOutputStream.html
http://docs.oracle.com/javaee/5/api/javax/servlet/ServletRequestAttributeEvent.html

CMR Institute of Technology Redefining Quality Education

II B.TECH II SEM OOP Course File

 attributes of the servlet request in an application.

ServletRequestEvent
Events of this kind indicate lifecycle events for a

ServletRequest.

ServletRequestWrapper

Provides a convenient implementation of the ServletRequest

interface that can be subclassed by developers wishing to

adapt the request to a Servlet.

ServletResponseWrapper

Provides a convenient implementation of the ServletResponse

interface that can be subclassed by developers wishing to

adapt the response from a Servlet.

Exception Summary

ServletException
Defines a general exception a servlet can throw when it encounters

difficulty.

UnavailableException
Defines an exception that a servlet or filter throws to indicate that it is

permanently or temporarily unavailable.

PACKAGE JAVAX.SERVLET DESCRIPTION

The javax.servlet package contains a number of classes and interfaces that describe and

define the contracts between a servlet class and the runtime environment provided for an

instance of such a class by a conforming servlet container.

http://docs.oracle.com/javaee/5/api/javax/servlet/ServletRequestEvent.html
http://docs.oracle.com/javaee/5/api/javax/servlet/ServletRequestWrapper.html
http://docs.oracle.com/javaee/5/api/javax/servlet/ServletResponseWrapper.html
http://docs.oracle.com/javaee/5/api/javax/servlet/ServletException.html
http://docs.oracle.com/javaee/5/api/javax/servlet/UnavailableException.html

	Kandlakoya (V), Medchal Road, Hyderabad – 501 401
	OBJECT ORIENTED PROGRAMMING
	(II B.Tech – I Semester)
	Assistant Professor
	C.M.R. ENGINEERING COLLEGE
	Syllabus
	II Year B.Tech I-Sem T P C
	OBJECT ORIENTED PROGRAMMING (1)
	UNIT II:
	UNIT III :
	UNIT IV:
	UNIT V:
	TEXTBOOKS :
	REFERENCES :
	11. Lecture Notes
	Need For OOP Paradigms:
	Methods:
	Classes:
	Encapsulation:
	Polymorphism:
	Class Hierarchies (Inheritance):
	Method Binding:
	Abstraction:
	Overriding:
	Exceptions:
	The switch Statement
	The while and do-while Statements
	The for Statement
	Declaring Member Variables
	Declaring Objects
	Constructors:
	This Keyword:
	Garbage Collection:
	Overloading Methods:
	Overloading Constructors:
	Parameter Passing:
	String Handling:
	The String Constructors:
	String Length:
	StringBuffer Constructors:
	Inheritance
	Base Class:
	Sub class:
	Forms of inheritance:
	Example for multilevel inheritance:
	Output
	Problems:
	Access Specifers:
	Super Keyword:
	Using final with inheritance:
	Polymorphism- dynamic binding:
	Output:
	UNIT-II
	Defining a Package:
	Creating a Package:
	Finding Packages and CLASSPATH:
	Access Protection:
	Importing Packages:
	Interfaces
	Defining an Interface:
	Implementing Interfaces:
	Accessing Implementations Through Interface References:
	Applying Interfaces:
	Variables in Interfaces:
	Interfaces Can Be Extended:
	EXPLORING JAVA.IO PACKAGE:
	File:
	The Stream Classes:
	Byte Stream Classes:
	OutputStream
	1. FileInputStream
	2. FileOutputStream
	The Character Streams:
	Reader
	Writer
	1. FileReader
	2. FileWriter
	Exception handling
	general form of an exception-handling block:
	Exception Types:
	Uncaught Exceptions:
	Using try and catch:
	Multiple catch Clauses:
	Nested try Statements:
	nesttry():
	Throws:
	finally:
	Java’s Built-in Exceptions:
	Exception Meaning
	Exception Meaning (1)
	Creating Your Own Exception Subclasses:
	MULTITHREADING
	The Java Thread Model:
	Thread Priorities:
	Synchronization:
	Messaging:
	The Thread Class and the Runnable Interface:
	Method Meaning
	The Main Thread:
	InterruptedException.
	Creating a Thread:
	Implementing Runnable
	Extending Thread:
	Creating Multiple Threads:
	Using isAlive() and join():
	Thread Priorities: (1)
	Synchronization: (1)
	Using Synchronized Methods:
	// This program is not synchronized.
	The synchronized Statement
	Interthread Communication:
	EXPLORING JAVA.UTIL PACKAGE:
	1. StringTokenizer
	2. Date
	3. Random
	COLLECTIONS IN JAVA
	1 AbstractCollection
	2 AbstractList
	AbstractSequentialList
	6 AbstractSet

	JAVA ARRAYLIST CLASS
	JAVA LINKEDLIST CLASS
	JAVA HASHSET CLASS
	JAVA TREESET CLASS
	JAVA QUEUE INTERFACE
	JAVA DEQUE INTERFACE
	1 boolean hasNext()
	Object next()
	void remove()
	void add(Object obj)
	2 boolean hasNext()
	3 boolean hasPrevious()
	Object next() (1)
	int nextIndex()
	Object previous()
	7 int previousIndex()
	void remove() (1)
	void set(Object obj)

	JAVA COMPARATOR INTERFACE
	Stack:
	boolean empty()
	2 Object peek()
	3 Object pop()
	4 Object push(Object element)
	int search(Object element)

	Vector
	1 Vector()
	Vector(int size)
	Vector(int size, int incr)
	4 Vector(Collection c)
	1 void add(int index, Object element)
	2 boolean add(Object o)
	boolean addAll(Collection c)
	boolean addAll(int index, Collection c)
	5 void addElement(Object obj)
	6 int capacity()
	7 void clear()
	8 Object clone()
	9 boolean contains(Object elem)
	10 boolean containsAll(Collection c)
	11 void copyInto(Object[] anArray)
	12 Object elementAt(int index)
	13 Enumeration elements()
	void ensureCapacity(int minCapacity)
	15 boolean equals(Object o)
	16 Object firstElement()
	17 Object get(int index)
	18 int hashCode()
	int indexOf(Object elem)
	int indexOf(Object elem, int index)
	21 void insertElementAt(Object obj, int index)
	22 boolean isEmpty()
	23 Object lastElement()
	24 int lastIndexOf(Object elem)
	int lastIndexOf(Object elem, int index)
	26 Object remove(int index)
	boolean remove(Object o)
	boolean removeAll(Collection c)
	29 void removeAllElements()
	30 boolean removeElement(Object obj)
	31 void removeElementAt(int index)
	protected void removeRange(int fromIndex, int toIndex)
	33 boolean retainAll(Collection c)
	34 Object set(int index, Object element)
	35 void setElementAt(Object obj, int index)
	36 void setSize(int newSize)
	37 int size()
	List subList(int fromIndex, int toIndex)
	39 Object[] toArray()
	Object[] toArray(Object[] a)
	String toString()
	42 void trimToSize()

	BIT SET
	1 BitSet()
	BitSet(int size)
	void and(BitSet bitSet)
	2 void andNot(BitSet bitSet)
	3 int cardinality()
	4 void clear()
	5 void clear(int index)
	6 void clear(int startIndex, int endIndex)
	7 Object clone()
	8 boolean equals(Object bitSet)
	9 void flip(int index)
	10 void flip(int startIndex, int endIndex)
	11 boolean get(int index)
	BitSet get(int startIndex, int endIndex)
	13 int hashCode()
	boolean intersects(BitSet bitSet)
	15 boolean isEmpty()
	int length()
	int nextClearBit(int startIndex)
	int nextSetBit(int startIndex)
	void or(BitSet bitSet)
	20 void set(int index)
	void set(int index, boolean v)
	22 void set(int startIndex, int endIndex)
	void set(int startIndex, int endIndex, boolean v)
	24 int size()
	25 String toString()
	void xor(BitSet bitSet)

	DATE
	Date(long millisec)
	boolean after(Date date)
	boolean before(Date date)
	3 Object clone()
	int compareTo(Date date)
	int compareTo(Object obj)
	boolean equals(Object date)
	7 long getTime()
	8 int hashCode()
	void setTime(long time)
	10 String toString()

	UNIT-V
	Window Fundamentals:
	Component:
	Container:
	Panel:
	Frame:
	Canvas:
	Working with Frame Windows:
	Creating a Frame Window in an Applet:
	Event Handling
	Two Event Handling Mechanisms:
	Events:
	Event Sources:
	Event Listeners:
	Event Classes:
	Main Event Classes in java.awt.event:
	The ActionEvent Class:
	The AdjustmentEvent Class:
	The ComponentEvent Class:
	The ContainerEvent Class:
	The FocusEvent Class:
	The InputEvent Class:
	ALT_MASK BUTTON2_MASK META_MASK ALT_GRAPH_MASK BUTTON3_MASK SHIFT_MASK BUTTON1_MASK CTRL_MASK
	ALT_DOWN_MASK ALT_GRAPH_DOWN_MASK BUTTON1_DOWN_MASK BUTTON2_DOWN_MASK BUTTON3_DOWN_MASK CTRL_DOWN_MASK META_DOWN_MASK SHIFT_DOWN_MASK
	The ItemEvent Class:
	VK_ENTER VK_ESCAPE VK_CANCEL VK_UP VK_DOWN VK_LEFT VK_RIGHT VK_PAGE_DOWN VK_PAGE_UP VK_SHIFT VK_ALT VK_CONTROL
	The MouseEvent Class:
	The MouseWheelEvent Class:
	The WindowEvent Class:
	Event Source Description:
	Event Listener Interfaces:
	1) The ActionListener Interface:
	2) The AdjustmentListener Interface:
	3) The ComponentListener Interface:
	4) The ContainerListener Interface:
	5) The FocusListener Interface:
	6) The ItemListener Interface:
	7) The KeyListener Interface:
	8) The MouseListener Interface:
	9) The MouseMotionListener Interface:
	10) The MouseWheelListener Interface:
	11) The TextListener Interface:
	12) The WindowFocusListener Interface:
	13) The WindowListener Interface:
	Using the Delegation Event Model:
	Handling Mouse Events:
	Handling Keyboard Events:
	Adapter Classes:
	Inner Classes:
	Anonymous Inner Classes:
	Handling Events in a Frame Window:
	Creating a Windowed Program:
	user interface components:
	Control Fundamentals:
	1. Labels:
	2. Buttons:
	3. Check Boxes:
	4. CheckboxGroup:
	5. Choice Controls:
	6. Lists:
	7. Managing Scroll Bars:
	8. Using a TextField:
	9. Using a TextArea:
	Understanding Layout Managers:
	1. FlowLayout:
	2. BorderLayout:
	3. GridLayout:
	4. CardLayout:
	Menu Bars and Menus:
	Dialog Boxes:
	FileDialog:
	Working with Graphics:
	Drawing Lines
	Drawing Rectangles
	Drawing Ellipses and Circles
	UNIT-8 Applets & swings
	OTHER DIFFERENCES BETWEEN APPLETS AND APPLICATIONS
	Local and Remote Applets:
	Specifying a Local Applet.
	Listing: Specifiying a Remote Applet.
	Creating Applets:
	Desiginig a wed page:
	Adding applet to html file:
	Running the applet:
	Passing Parameters to Applets:
	SWING
	javax.swing.tree.
	AWT:
	Swing:
	Exploring Swing:
	Icons and Labels:
	Text Fields:
	Buttons:
	The JButton Class:
	Check Boxes:
	Radio Buttons:
	Combo Boxes:
	Tabbed Panes:
	Scroll Panes:
	Trees:
	Tables:
	UNIT-I:
	UNIT-I: (1)
	UNIT-I: (2)
	UNIT-II:
	UNIT-III:
	UNIT-IV:
	UNIT-V
	UNIT-V (1)
	ADD-ON CONTENT
	Figure 4-1. The classes and interfaces of java.sql, the JDBC API package
	See:
	See: (1)

